首页 > 论文 > 高功率激光及等离子体物理研究论文集(专题) > 14卷 > 1期(pp:609001--1)

PIE成像方法技术现状及发展趋势

Research Status and Development Trend of PIE Imaging Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为一种新近发展的无透镜成像技术,PIE(ptychographical iterative engine)不但保持了传统相干衍射成像方法装置简单、使用方便等优点,克服了视场受限和收敛速度慢等缺点,还具有成像范围可扩展、收敛速度快、抗噪声能力强等优势,在光学、X射线和电子束等领域得到了广泛关注并开展了大量研究,是一种有可能在大范围内替代现有相位成像技术的新方法。主要介绍了PIE方法的技术背景、技术现状、相关应用及面临的问题和可能的发展方向。

Abstract

As a newly developed lensless imaging technique, PIE (ptychographical iterative engine) does not only maintain the simplicity and convenience of the equipment of traditional coherent diffraction imaging (CDI) methods, but also overcomes the drawbacks such as restricted field of view and slow convergence. With the extensible imaging field, better convergence speed and higher immunization capability to noise, PIE is widely researched and used in optical, X-ray and electron beam imaging fields. PIE is a new method which is possible to replace the current phase imaging methods. The background, development, applications, problems and developing trend of the PIE method are introduced.

补充资料

中图分类号:O436

DOI:

所属栏目:元器件与工程工艺技术

基金项目:中科院百人计划(1204341XR0)

收稿日期:2015-11-16

修改稿日期:2016-01-15

网络出版日期:--

作者单位    点击查看

姚玉东:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
刘诚:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
潘兴臣:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
陶华:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
王海燕:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:姚玉东(yaoyud1990@siom.ac.cn)

备注:姚玉东(1990-),女,博士研究生,主要从事光学测量等方面的研究。

【1】McNulty I, Kirz J, Jacobsen C, et al。。 High-resolution imaging by Fourier transform X-ray holography[J]。 Science, 1992, 256(5059): 1009-1012。

【2】Eisebitt S, Lüning J, Schlotter W F, et al.. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

【3】Zhang F, Yamaguchi I, Yaroslavsky L P。 Algorithm for reconstruction of digital holograms with adjustable magnification[J]。 Optics Letters, 2004, 29(14): 1668-1670。

【4】Pan Xingchen, Liu Cheng, Zhu Jianqiang. Improved Fienup′s iteration method for image reconstruction in digital holography[J]. Acta Optica Sinica, 2012, 32(6): 0609002.
潘兴辰, 刘诚, 朱健强. 用改进的Fienup迭代算法进行数字全息重建[J]. 光学学报, 2012, 32(6): 0609002.

【5】Xia Haoguang, Zhang Jiachen, Ji Xiaoli, et al.. A resolution enhancement method based on interpolation and extrapolation in digital holography[J]. Chinese J Lasers, 2014, 41(4): 0409003.
夏好广, 张佳辰, 纪晓丽, 等. 基于内插与外推的数字全息分辨率增强方法[J]. 中国激光, 2014, 41(4): 0409003.

【6】Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15): 1008-1010.

【7】Costa J B。 Modulation effect of the atmosphere in a pyramid wave-front sensor[J]。 Applied Optics, 2005, 44(1): 60-66。

【8】Hoppe W。 Diffraction in inhomogeneous primary wave fields。 1。 Principle of phase determination from electron diffraction interference[J]。 Acta Crystallographica Section A, 1969, 25: 495-501。

【9】Hoppe W, Strube G. Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences[J]. Acta Crystallographica Section A, 1969, 25: 502-507.

【10】Hoppe W. Diffraction in inhomogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects[J]. Acta Crystallographica Section A, 1969, 25: 508-515.

【11】Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-250.

【12】Gerchberg R W. Super-resolution through error energy reduction[J]. Journal of Modern Optics, 1974, 21(9): 709-720.

【13】Saxton W O. Computer techniques for image processing in electron microscopy[M]. New York: Academic Press, 2013.

【14】Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

【15】Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

【16】Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

【17】Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 1982, 72(5): 610-624.

【18】Crimmins T R, Fienup J R, Thelen B J。 Improved bounds on object support from autocorrelation support and application to phase retrieval[J]。 Journal of the Optical Society of America A, 1990, 7(1): 3-13。

【19】Chapman H N, Barty A, Marchesini S, et al。。 High-resolution ab initio three-dimensional X-ray diffraction microscopy[J]。 Journal of the Optical Society of America A, 2006, 23(5): 1179-1200。

【20】Lane R G。 Phase retrieval using conjugate gradient minimization[J]。 Journal of Modern Optics, 1991, 38(9): 1797-1813。

【21】Fienup J R, Marron J C, Schulz T J, et al.. Hubble space telescope characterized by using phase-retrieval algorithms[J]. Applied Optics, 1993, 32(10): 1747-1767.

【22】Fienup J R. Phase-retrieval algorithms for a complicated optical system[J]. Applied Optics, 1993, 32(10): 1737-1746.

【23】Fienup J R. Wave front sensing by nonlinear optimization[C]. Frontiers in Optics, New York, 2006: FML2.

【24】Nieto-Vesperinas M, Fuentes F J, Navarro R。 Performance of a simulated-annealing algorithm for phase retrieval[J]。 Journal of the Optical Society of America A, 1988, 5(1): 30-38。

【25】Takajo H, Takahashi T, Kawanami H, et al。。 Numerical investigation of the iterative phase-retrieval stagnation problem: Territories of convergence objects and holes in their boundaries[J]。 Journal of the Optical Society of America A, 1997, 14(12): 3175-3187。

【26】Takajo H, Takahashi T, Ueda R, et al.. Study on the convergence property of the hybrid input-output algorithm used for phase retrieval[J]. Journal of the Optical Society of America A, 1998, 15(11): 2849-2861.

【27】Takajo H, Takahashi T, Shizuma T. Further study on the convergence property of the hybrid input-output algorithm used for phase retrieval[J]. Journal of the Optical Society of America A, 1999, 16(9): 2163-2168.

【28】Ivanov V Y, Vorontsov M A, Sivokon V P. Phase retrieval from a set of intensity measurements: Theory and experiment[J]. Journal of the Optical Society of America A, 1992, 9(9): 1515-1524.

【29】Allen L J, Oxley M P。 Phase retrieval from series of images obtained by defocus variation[J]。 Optics Communications, 2001, 199(1): 65-75。

【30】Hu Xiaojun. Study on phase retrieval on-sit testing for large optics[D]. Changsha: National University of Defense Technology, 2008.
胡晓军. 大型光学镜面相位恢复在位检测技术研究[D]. 长沙: 国防科学技术大学, 2008.

【31】Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Applied Optics, 2006, 45(34): 8596-8605.

【32】Pedrini G, Osten W, Zhang Y。 Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]。 Optics Letters, 2005, 30(8): 833-835。

【33】Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Applied Optics, 2008, 47(16): 2979-2987.

【34】Almoro P F, Gundu P N, Hanson S G. Numerical correction of aberrations via phase retrieval with speckle illumination[J]. Optics Letters, 2009, 34(4): 521-523.

【35】Almoro P F, Pedrini G, Anand A, et al.. Angular displacement and deformation analyses using a speckle-based wavefront sensor[J]. Applied Optics, 2009, 48(5): 932-940.

【36】Mosso F, Peters E, Pérez D G. Complex wavefront reconstruction from multiple-image planes produced by a focus tunable lens[J]. Optics Letters, 2015, 40(20): 4623-4626.

【37】Bao P, Zhang F, Pedrini G, et al.. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309-311.

【38】Miao J, Charalambous P, Kirz J, et al.. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(6742): 342-344.

【39】Chapman H N, Nugent K A。 Coherent lensless X-ray imaging[J]。 Nature Photonics, 2010, 4(12): 833-839。

【40】Miao J, Chen C C, Song C, et al。。 Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy[J]。 Physical Review Letters, 2006, 97(21): 215503。

【41】Cederquist J N, Fienup J R, Wackerman C C, et al.. Wave-front phase estimation from Fourier intensity measurements[J]. Journal of the Optical Society of America A, 1989, 6(7): 1020-1026.

【42】Brady G R, Fienup J R。 Nonlinear optimization algorithm for retrieving the full complex pupil function[J]。 Optics Express, 2006, 14(2): 474-486。

【43】Matsuoka S, Yamakawa K。 Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method[J]。 Journal of the Optical Society of America B, 2000, 17(4): 663-667。

【44】Marozas J A. Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of the Optical Society of America A, 2007, 24(1): 74-83.

【45】Bu S, Wyrowski F. Solving tolerancing and three-dimensional beam shaping problems by multifunctional wave optical design[J]. Optical Engineering, 2001, 40(8): 1590-1597.

【46】Johnson E G, Brasher J D. Phase encryption of biometrics in diffractive optical elements[J]. Optics Letters, 1996, 21(16): 1271-1273.

【47】Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 571-579.

【48】Trebino R, Kane D J。 Using phase retrieval to measure the intensity and phase of ultrashort pulses: Frequency-resolved optical gating[J]。 Journal of the Optical Society of America A, 1993, 10(5): 1101-1111。

【49】Ivankovski Y, Mendlovic D。 High-rate-long-distance fiber-optic communication based on advanced modulation techniques[J]。 Applied Optics, 1999, 38(26): 5533-5540。

【50】Morris D. Phase retrieval in the radio holography of reflector antennas and radio telescopes[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(7): 749-755.

【51】Datta G K, Vasu R M。 Non-interferometric methods of phase estimation for application in optical tomography[J]。 Journal of Modern Optics, 1999, 46(9): 1377-1388。

【52】Maleki M H, Devaney A J. Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography[J]. Journal of the Optical Society of America A, 1993, 10(5): 1086-1092.

【53】Skaar J。 Iterative design of antireflection coatings based on the direct and inverse scattering transform[J]。 Optics Communications, 2004, 232(1): 45-48。

【54】Bruck Y M, Sodin L G。 On the ambiguity of the image reconstruction problem[J]。 Optics Communications, 1979, 30(3): 304-308。

【55】Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150: 87-184.

【56】Rodenburg J M, Hurst A C, Cullis A G。 Transmission microscopy without lenses for objects of unlimited size[J]。 Ultramicroscopy, 2007, 107(2): 227-231。

【57】Pan X, Liu C, Lin Q, et al.. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 2013, 21(5): 6162-6168.

【58】Maiden A M, Humphry M J, Sarahan M C, et al.. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

【59】Zhang F, Peterson I, Vila-Comamala J, et al。。 Translation position determination in ptychographic coherent diffraction imaging[J]。 Optics Express, 2013, 21(11): 13592-13606。

【60】Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158.

【61】Guizar-Sicairos M, Fienup J R。 Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]。 Optics Express, 2008, 16(10): 7264-7278。

【62】Beckers M, Senkbeil T, Gorniak T, et al.. Drift correction in ptychographic diffractive imaging[J]. Ultramicroscopy, 2013, 126: 44-47.

【63】Faulkner H M L, Rodenburg J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy[J]. Ultramicroscopy, 2005, 103(2): 153-164.

【64】Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

【65】Thibault P, Dierolf M, Bunk O, et al。。 Probe retrieval in ptychographic coherent diffractive imaging[J]。 Ultramicroscopy, 2009, 109(4): 338-343。

【66】Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10): 1263-1275.

【67】Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

【68】Godden T M, Suman R, Humphry M J, et al。。 Ptychographic microscope for three-dimensional imaging[J]。 Optics Express, 2014, 22(10): 12513-12523。

【69】Suzuki A, Furutaku S, Shimomura K, et al.. High-resolution multislice X-ray ptychography of extended thick objects[J]. Physical Review Letters, 2014, 112(5): 053903

【70】Shimomura K, Suzuki A, Hirose M, et al.. Precession X-ray ptychography with multislice approach[J]. Physical Review B, 2015, 91(21): 214114.

【71】Liu C, Zhu J Q, Rodenburg J. Influence of the illumination coherency and illumination aperture on the ptychographic iterative microscopy[J]. Chinese Physics B, 2015, 24(2): 024201.

【72】Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

【73】Batey D J, Claus D, Rodenburg J M。 Information multiplexing in ptychography[J]。 Ultramicroscopy, 2014, 138: 13-21。

【74】Liu Cheng, Pan Xingchen, Zhu Jianqiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18): 184204.
刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像[J]. 物理学报, 2013, 62(18): 184204.

【75】Pan X, Liu C, Zhu J。 Single shot ptychographical iterative engine based on multi-beam illumination[J]。 Applied Physics Letters, 2013, 103(17): 171105。

【76】Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 2007, 75(4): 043805.

【77】Zhang F, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 2010, 82(12): 121104.

【78】Wang H, Liu C, He X, et al.. Wavefront measurement techniques used in high power lasers[J]. High Power Laser Science and Engineering, 2014, 2(3): 12-23.

【79】Tao H, Veetil S P, Cheng J, et al。。 Measurement of the complex transmittance of large optical elements with modulation coherent imaging[J]。 Applied Optics, 2015, 54(7): 1776-1781。

【80】Tao H, Veetil S P, Pan X, et al.. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 2015, 54(22): 6632-6639.

【81】He X, Veetil S P, Liu C, et al.. Accurate focal spot diagnostics based on a single shot coherent modulation imaging[J]. Laser Physics Letters, 2015, 12(1): 015005.

【82】Rodenburg J M, Hurst A C, Cullis A G, et al.. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

【83】Hüe F, Rodenburg J M, Maiden A M, et al。。 Wave-front phase retrieval in transmission electron microscopy via ptychography[J]。 Physical Review B, 2010, 82(12): 121415。

【84】Humphry M J, Kraus B, Hurst A C, et al.. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3: 730.

【85】Claus D, Schluesener H, Maiden A, et al。。 Ptychography: A powerful phase retrieval technique for biomedical imaging[C]。 SPIE, 2011, 8338: 83381G。

【86】Maiden A M, Humphry M J, Zhang F, et al.. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

【87】Wang H Y, Liu C, Veetil S P, et al.. Measurement of the complex transmittance of large optical elements with ptychographical iterative engine[J]. Optics Express, 2014, 22(2): 2159-2166.

【88】Wang H Y, Veetil S P, Liu C, et al.. Measurement of thermal distortion in high power laser glass elements using ptychography[J]. Laser Physics Letters, 2015, 12(2): 025005.

【89】Wang H Y, Liu C, Pan X C, et al.. The application of ptychography in the field of high power laser[C]. SPIE, 2015, 9255: 925534.

【90】Huang X J, Lauer K, Clark J N, et al.. Fly-scan ptychography[J]. Science Report, 2015, 5: 9074.

【91】Pelz P M, Guizar-Sicairos M, Thibault P, et al。。 On-the-fly scans for X-ray ptychography[J]。 Applied Physics Letters, 2014, 105(25): 251101。

引用该论文

Yao Yudong,Liu Cheng,Pan Xingchen,Tao Hua,Wang Haiyan,Zhu Jianqiang. Research Status and Development Trend of PIE Imaging Method[J]. Collection Of theses on high power laser and plasma physics, 2016, 14(1): 0609001

姚玉东,刘诚,潘兴臣,陶华,王海燕,朱健强. PIE成像方法技术现状及发展趋势[J]. 高功率激光及等离子体物理研究论文集(专题), 2016, 14(1): 0609001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

上海11选5走势 福建快3 欢乐彩票计划群 北京赛车pk10赔率最高的平台 极速赛车登陆 极速赛车公式软件 贵州快3计划 吉林快3 彩之家彩票计划群 秒速赛车登陆