首页 > 论文 > 激光与光电子学进展 > 56卷 > 22期(pp:221004--1)

基于集中稀疏表示的天文图像超分辨率重建

Super-Resolution Reconstruction of Astronomical Images Based on Centralized Sparse Representation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对天文图像成像分辨率低的问题,基于集中稀疏表示图像超分辨率重建理论,提出一种层次聚类字典训练和相似约束的天文图像超分辨率重建算法。在字典训练阶段,采用新的基于层次的聚类算法对样本图像块进行归类,对每类图像块进行独立训练得到多个紧凑型字典。在图像重建阶段,通过抑制稀疏编码噪声提高稀疏编码系数的准确性,并利用图像的非局部自相似性对重建图像的稀疏系数进行合理估计。此外,通过构建非局部自相似正则化项对图像重建过程进行全局约束。仿真结果表明,该算法可以有效地改善天文图像的分辨率,重建图像在主观视觉效果和客观评价指标上都要优于其他传统的超分辨率重建算法。

Abstract

This study proposes a super-resolution reconstruction algorithm with hierarchical clustering dictionary training and similar constraints for astronomical images, according to the theory of centralized sparse representation based image super-resolution reconstruction, thereby solving the problem of low imaging resolution of the astronomical images. In the dictionary training phase, a novel hierarchical clustering algorithm is used for classifying the sample image patches. Further, each image patch is independently trained to obtain multiple compact dictionaries. In the image reconstruction stage, the accuracy of the sparse coding coefficients is improved by suppressing the sparse coding noise. Subsequently, the sparse coefficients of the reconstructed image can be reasonably estimated based on the non-local self-similarity of the image. In addition, the image reconstruction process is globally constrained by the construction of non-local self-similar regularization terms. The experimental results denote that the proposed algorithm can effectively improve the resolution of astronomical images. Furthermore, the subjective visual effects and objective evaluation indicators of the reconstructed images are observed to be superior to those obtained by using other traditional super-resolution reconstruction algorithms.

补充资料

DOI:

所属栏目:图像处理

基金项目:国家自然科学基金;

收稿日期:2019-04-12

修改稿日期:2019-05-17

网络出版日期:2019-11-01

作者单位    点击查看

段亚康:西南交通大学物理科学与技术学院, 四川 成都 610031
罗林:西南交通大学物理科学与技术学院, 四川 成都 610031
李金龙:西南交通大学物理科学与技术学院, 四川 成都 610031
高晓蓉:西南交通大学物理科学与技术学院, 四川 成都 610031

联系人作者:李金龙(jinlong_lee@126.com)

备注:国家自然科学基金;

【1】Hirsch M, Harmeling S, Sra S et al。 Online multi-frame blind deconvolution with super-resolution and saturation correction。 Astronomy & Astrophysics。 531(A&A), (2011)。

【2】Liu Q S, Bai J and Yu F H。 Astronomical image denoising by means of improved adaptive backtracking-based matching pursuit algorithm。 Applied Optics。 53(32), 7796-7803(2014)。

【3】Li Z, Peng Q Y, Bhanu B et al。 Super resolution for astronomical observations。 Astrophysics and Space Science。 363(5), (2018)。

【4】Gong R, Wang Y, Cai Y L et al. How to deal with color in super resolution reconstruction of images. Optics Express. 25(10), 11144-11156(2017).

【5】Li M and Nguyen T Q. Markov random field model-based edge-directed image interpolation. IEEE Transactions on Image Processing. 17(7), 1121-1128(2008).

【6】Shi W J. TGV regularized super resolution reconstruction for infrared remote sensing image. Laser & Optoelectronics Progress. 55(9), (2018).
时文俊. 红外遥感图像TGV正则化超分辨率重建. 激光与光电子学进展. 55(9), (2018).

【7】Liu J Y, Yang W H, Zhang X F et al。 Retrieval compensated group structured sparsity for image super-resolution。 IEEE Transactions on Multimedia。 19(2), 302-316(2017)。

【8】Thapa D, Raahemifar K, Bobier W R et al。 A performance comparison among different super-resolution techniques。 Computers & Electrical Engineering。 54, 313-329(2016)。

【9】Li L, Xie Y, Hu W R et al。 Single image super-resolution using combined total variation regularization by split Bregman iteration。 Neurocomputing。 142, 551-560(2014)。

【10】Qiu K, Yi B S, Xiang M et al. Collaborative sparse dictionary learning for reconstruction of single image super resolution. Acta Optica Sinica. 38(9), (2018).
邱康, 易本顺, 向勉 等. 协作稀疏字典学习实现单幅图像超分辨率重建. 光学学报. 38(9), (2018).

【11】Chang H, Yeung D Y and Xiong Y M. Super-resolution through neighbor embedding. [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., June 27-July 2, 2004, Washington, DC, USA. New York: IEEE. 8152809, (2004).

【12】Yang J C, Wright J, Huang T et al. Image super-resolution as sparse representation of raw image patches. [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE. 10139952, (2008).

【13】Yang J C, Wright J, Huang T S et al。 Image super-resolution via sparse representation。 IEEE Transactions on Image Processing。 19(11), 2861-2873(2010)。

【14】Zeyde R, Elad M and Protter M. On single image scale-up using sparse-representations. //Boissonnat J D, Chenin P, Cohen A, et al. Curves and surfaces. Lecture notes in computer science. Berlin, Heidelberg: Springer. 6920, 711-730(2012).

【15】Timofte R, De V and Gool L V. Anchored neighborhood regression for fast example-based super-resolution. [C]//2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE. 1920-1927(2013).

【16】Dong W S, Zhang L, Shi G M et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing. 20(7), 1838-1857(2011).

【17】Dong W S, Zhang L, Shi G M et al. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing. 22(4), 1620-1630(2013).

【18】Chu J H, Hu F S, Zhang J Q et al. An improved single-frame super-resolution algorithm for magnetic resonance image. Laser & Optoelectronics Progress. 55(5), (2018).
褚晶辉, 胡风硕, 张佳祺 等. 一种改进的单帧磁共振图像超分辨率算法. 激光与光电子学进展. 55(5), (2018).

【19】Elad M and Aharon M。 Image denoising via sparse and redundant representations over learned dictionaries。 IEEE Transactions on Image Processing。 15(12), 3736-3745(2006)。

【20】Glasner D, Bagon S and Irani M。 Super-resolution from a single image。 [C]//2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, 2009, Kyoto, Japan。 New York: IEEE。 349-356(2009)。

【21】Yang S Y, Liu Z Z, Wang M et al。 Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction。 Neurocomputing。 74(17), 3193-3203(2011)。

【22】Xu R。 WunschII D。 Survey of clustering algorithms。 IEEE Transactions on Neural Networks。 16(3), 645-678(2005)。

【23】Aharon M, Elad M and Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing. 54(11), 4311-4322(2006).

【24】Daubechies I。 Defrise M, de Mol C。 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint。 Communications on Pure and Applied Mathematics。 57(11), 1413-1457(2004)。

引用该论文

Duan Yakang,Luo Lin,Li Jinlong,Gao Xiaorong。 Super-Resolution Reconstruction of Astronomical Images Based on Centralized Sparse Representation[J]。 Laser & Optoelectronics Progress, 2019, 56(22): 221004

段亚康,罗林,李金龙,高晓蓉。 基于集中稀疏表示的天文图像超分辨率重建[J]。 激光与光电子学进展, 2019, 56(22): 221004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

金誉彩票计划群 环球一号彩票计划群 凤凰平台app下载 上海11选5走势 福布斯彩票计划群 山东11选5 极速赛车直播 内蒙古快3计划 极速赛车官网开奖结果 青海快3