首页 > 论文 > 光学学报 > 40卷 > 3期(pp:0312002--1)

二值化数字散斑功率谱理论研究

Theoretical Study on Binary Digital Speckle Power Spectrum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

散斑质量评价的关键在于构建能够描述散斑特征参数与数字图像相关方法测量误差关系的模型。现今缺少描述散斑图案与其功率谱之间关系的理论分析模型。基于此,从随机过程分析角度出发,先构建了二值化散斑的自相关函数与散斑占空比、散斑半径、灰度值等参数的关系。依据Wiener-Khintchine定理得出了二值化散斑功率谱的理论解析形式。利用数值实验的方式对理论分析结果进行了验证。结果表明:理论推导的结果在功率谱主瓣以及其附近的几个旁瓣上与数值实验结果较吻合,功率谱主瓣极值与实验结果契合程度高。该模型可以应用于后续的散斑误差分析工作。

Abstract

The key in the quality evaluation of the speckle is to construct model which can describe the relation between speckle pattern feature parameters and measurement error of digital image correlation method. Till date, no theoretical analysis model describing the relation between the speckle pattern and its power spectrum has been reported. To address this issue and considering the perspective of stochastic process analysis, the relations between the auto-correlation function of the binary speckle and parameters of speckle duty, speckle radius, and gray value are investigated herein. Furthermore, the theoretical analytical form of the binary speckle power spectrum is obtained according to the Wiener-Khintchine theorem. Finally, the theoretical analysis results are verified by numerical experiments. It is observed that the theoretically derived results are consistent with the numerical experiment results on the main lobe of the power spectrum and on several side-lobes nearby. Considering the power spectrum, the maximum value of the main spectrum is consistent with the experimental results. This model can be applied to subsequent speckle error analysis studies.

补充资料

中图分类号:O436

DOI:

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金、江苏省自然科学基金、山东省自然科学基金、中国博士后科学基金;

收稿日期:2019-09-06

修改稿日期:2019-10-12

网络出版日期:2020-02-01

作者单位    点击查看

吴文杰:南京理工大学理学院, 江苏 南京 210094
刘聪:南京理工大学理学院, 江苏 南京 210094CAD/CAM 福建省高校工程研究中心, 福建 莆田 351100
徐志洪:南京理工大学理学院, 江苏 南京 210094
刘晓鹏:山东科技大学计算机科学与工程学院, 山东 黄岛 266590

联系人作者:刘聪(LiuC@njust.edu.cn)

备注:国家自然科学基金、江苏省自然科学基金、山东省自然科学基金、中国博士后科学基金;

【1】Liu C, Dai Y T, Dai M L, et al. Deformation measurement by two-dimensional multi-camera full-field digital image correlation [J]. Acta Optica Sinica. 2016, 36(12): 1212002.
刘聪, 戴云彤, 戴美玲, 等. 二维多相机全场数字图像相关变形测量方法 [J]. 光学学报. 2016, 36(12): 1212002.

【2】Pan B, Xie H, Yang L, et al. Accurate measurement of satellite antenna surface using 3D digital image correlation technique [J]. Strain. 2009, 45(2): 194-200.

【3】Choi S, Shah S P。 Measurement of deformations on concrete subjected to compression using image correlation [J]。 Experimental Mechanics。 1997, 37(3): 307-313。

【4】Chevalier L, Calloch S, Hild F, et al. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [J]. European Journal of Mechanics-A. 2001, 20(2): 169-187.

【5】Zhang D S, Eggleton C D, Arola D D. Evaluating the mechanical behavior of arterial tissue using digital image correlation [J]. Experimental Mechanics. 2002, 42(4): 409-416.

【6】Wang J, Li H Q, Xing D M, et al. Application of digital image correlation method in bridge cracks measurement [J]. Chinese Quarterly of Mechanics. 2003, 24(4): 512-516.
王静, 李鸿琦, 邢冬梅, 等. 数字图像相关方法在桥梁裂缝变形监测中的应用 [J]. 力学季刊. 2003, 24(4): 512-516.

【7】Chan Y C, Dai X, Jin G C, et al. Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method [J]. Microwave and Optical Technology Letters. 1997, 16(2): 80-85.

【8】Wu M Y, Guo J J, Jiang M. Calibration method of microscopic three-dimensional digital image correlation system based on fixed-point rotation [J]. Acta Optica Sinica. 2018, 38(12): 1215010.
吴敏杨, 郭建军, 蒋明. 基于定点旋转的显微三维数字图像相关系统标定方法 [J]. 光学学报. 2018, 38(12): 1215010.

【9】Chen Z N, Quan C G, Zhu F P, et al. A method to transfer speckle patterns for digital image correlation [J]. Measurement Science and Technology. 2015, 26(9): 095201.

【10】Zhou P, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC) [J]. Optical Engineering. 2001, 40(8): 1613-1620.

【11】Su Y, Zhang Q C, Gao Z R. Statistical model for speckle pattern optimization [J]. Optics Express. 2017, 25(24): 30259-30275.

【12】Tang H C, Li D H, Li L, et al. Planar object surface shape speckle pattern deflectometry based on digital image correlation [J]. Acta Optica Sinica. 2019, 39(2): 0212006.
汤海潮, 李大海, 李磊, 等. 基于数字图像相关的平面物体面形散斑图形偏折术 [J]. 光学学报. 2019, 39(2): 0212006.

【13】Gao Z R, Xu X H, Su Y, et al. Experimental analysis of image noise and interpolation bias in digital image correlation [J]. Optics and Lasers in Engineering. 2016, 81: 46-53.

【14】Wang Y Q, Sutton M A, Bruck H A, et al。 Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements [J]。 Strain。 2009, 45(2): 160-178。

引用该论文

Wu Wenjie,Liu Cong,Xu Zhihong,Liu Xiaopeng。 Theoretical Study on Binary Digital Speckle Power Spectrum[J]。 Acta Optica Sinica, 2020, 40(3): 0312002

吴文杰,刘聪,徐志洪,刘晓鹏. 二值化数字散斑功率谱理论研究[J]. 光学学报, 2020, 40(3): 0312002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

福建快3开奖 上海11选5开奖 大象彩票计划群 上海11选5走势 山东11选5开奖 9号棋牌APP 福建快3开奖 极速赛车彩票走势图 极速赛车登陆 上海11选5计划