首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1001003--1)

基于水面特征波纹的水下运动目标Radon变换探测方法

Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对在光电偏振成像模式下缺乏行之有效的水下运动目标探测方法的问题,提出了一种基于水面特征波纹的水下运动目标检测算法。通过海面风生重力波模型和水下运动目标的水面特征波纹模型,仿真得到不同状态下的海面混合波纹图像,用于算法研究及证明;采用Radon变换提取波纹的线性特征,并通过均值滤波和标准归一化处理消除Radon变换对检测的影响;采用双邻域自适应门限法提取Radon变换域中的局部峰值点,利用连续小波变换进行特征提取,并用支持向量机(SVM)判断峰值点真伪,提高检测的准确率。实验结果证明了本文算法对特征波纹检测的可行性。该算法为探测水下运动目标提供了一种新的有效途径。

Abstract

An underwater moving target detection algorithm based on water surface characteristic wave is proposed to overcome the shortage of effective detection methods for photoelectric polarization imaging modes。 Based on the wind-induced gravity wave model and the water surface characteristic wave model of an underwater moving target, the mixed wave images under different states are simulated and used for the research of the algorithm。 The algorithm uses the Radon transform to extract the linear wave characteristic, and average filter and standardization are employed to preprocess images, thereby eliminating the adverse effect of Radon transform on detection。 The double-neighborhood adaptive threshold method is employed to extract partial peak points in Radon transform domain。 The algorithm employs continuous wavelet transform to extract features and support vector machine to judge the peak points, thereby improving the detection accuracy。 The experimental result shows that the algorithm is feasible for characteristic wave detection, which also provides a new way for underwater moving target detection。

补充资料

DOI:

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金;

收稿日期:2019-04-02

修改稿日期:2019-06-03

网络出版日期:2019-10-01

作者单位    点击查看

徐曼:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
裘溯:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
金伟其:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
杨洁:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
郭宏:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081

联系人作者:裘溯(edmondqiu@bit.edu.cn)

备注:国家自然科学基金;

【1】Zhang J, Zhang X C, Zhao F et al. Progress of investigation on non-acoustic detection for submarine wake originated from naval hydrodynamics [J]. Journal of Ship Mechanics. 2003, 7(2): 121-128.
张军, 张效慈, 赵峰 等. 源于水动力学的潜艇尾迹非声探测技术研究之进展 [J]. 船舶力学. 2003, 7(2): 121-128.

【2】Zhou Q F, Liu J H, Xiong W Z et al. Multi-target self-determination orientation system based on airborne photoelectric imaging platform [J]. Acta Optica Sinica. 2015, 35(1): 0112005.
周前飞, 刘晶红, 熊文卓 等. 机载光电成像平台的多目标自主定位系统研究 [J]. 光学学报. 2015, 35(1): 0112005.

【3】Lu X T, Jin W Q, Li L et al. Theory and analysis of a large field polarization imaging system with obliquely incident light [J]. Optics Express. 2018, 26(3): 2495-2508.

【4】Zhang Y J, Wang X and He S. Polarization properties of rough surfaces based on polarized bi-directional reflectance distribution function [J]. Acta Optica Sinica. 2018, 38(3): 0329002.
章延隽, 王霞, 贺思. 基于偏振双向反射分布函数的粗糙表面偏振特性 [J]. 光学学报. 2018, 38(3): 0329002.

【5】Liu J, Lu X T, Jin W Q et al. Transparent surface orientation from polarization imaging using vector operation [J]. Applied Optics. 2018, 57(9): 2306-2313.

【6】Rey M T, Tunaley J K, Folinsbee J T et al. Application of radon transform techniques to wake detection in seasat-a SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing. 1990, 28(4): 553-560.

【7】Mata-Moya D, Jarabo-Amores P, Jimenez-Chaparro B et al. Application of mean-shift filtering to ship wakes detection in SAR images . [C]∥8th European Conference on Synthetic Aperture Radar (EUSAR), June 7-10, 2010, Aachen, Germany. New York: IEEE. 2011, 890-893.

【8】Graziano M D. SAR-based ship route estimation by wake components detection and classification . [C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE. 2015, 3255-3258.

【9】Yang G Z, Yu J, Xiao C B et al. Ship wake detection in SAR images with complex background using morphological dictionary learning [J]. Acta Automatica Sinica. 2017, 43(10): 1713-1725.
杨国铮, 禹晶, 肖创柏 等. 基于形态字典学习的复杂背景SAR图像舰船尾迹检测 [J]. 自动化学报. 2017, 43(10): 1713-1725.

【10】Xing X W, Ji K F, Zou H X et al. An enhancing normalized radon transform method for ship wake detection in SAR imagery . [C]∥9th European Conference on Synthetic Aperture Radar (EUSAR), April 23-26, 2012, Nuremberg, Germany. New York: IEEE. 2012, 559-562.

【11】Li D M, Jin W Q, Li L et al. Numerical simulation and analysis of free-surface wake generated by moving submerged target [J]. Infrared and Laser Engineering. 2018, 47(11): 1126004.
李丹梦, 金伟其, 李力 等. 水下运动目标的水面波纹数值模拟及分析 [J]. 红外与激光工程. 2018, 47(11): 1126004.

【12】Li H, Guo C and Li X F. 3-D visual simulation of irregular ocean waves based on Matlab [J]. Journal of System Simulation. 2003, 15(7): 1057-1059.
李晖, 郭晨, 李晓方. 基于Matlab的不规则海浪三维仿真 [J]. 系统仿真学报. 2003, 15(7): 1057-1059.

【13】Yang H P and Sun J G. Wave simulation based on ocean wave spectrums [J]. Journal of System Simulation. 2002, 14(9): 1175-1178.
杨怀平, 孙家广. 基于海浪谱的波浪模拟 [J]. 系统仿真学报. 2002, 14(9): 1175-1178.

【14】Jain A and Signal Processing. San Diego, CA, USA . New York:. 1984, IEEE: 495-498.

【15】Kaiser G and Hudgins L H. A friendly guide to wavelets [J]. Physics Today. 1995, 48(7): 57-58.

【16】Zhou X and Zhao H. Three-dimensional profilometry based on Mexican hat wavelet transform [J]. Acta Optica Sinica. 2009, 29(1): 197-202.
周翔, 赵宏. 基于Mexican hat小波变换的三维轮廓术 [J]. 光学学报. 2009, 29(1): 197-202.

【17】Wang S T, Wu X, Zhu W H et al. Fluorescence detection of polycyclic aromatic hydrocarbons by parallel factor combined with support vector machine [J]. Acta Optica Sinica. 2019, 39(5): 0530002.
王书涛, 吴兴, 朱文浩 等. 平行因子结合支持向量机对多环芳烃的荧光检测 [J]. 光学学报. 2019, 39(5): 0530002.

引用该论文

Xu Man,Qiu Su,Jin Weiqi,Yang Jie,Guo Hong。 Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave[J]。 Acta Optica Sinica, 2019, 39(10): 1001003

徐曼,裘溯,金伟其,杨洁,郭宏. 基于水面特征波纹的水下运动目标Radon变换探测方法[J]. 光学学报, 2019, 39(10): 1001003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

上海快3 安徽快3走势 澳门手机网投 鑫彩网彩票计划群 上海11选5开奖 福布斯彩票计划群 永利彩票计划群 彩客网计划群 彩16彩票计划群 极速赛车登陆