首页 > 论文 > 光学学报 > 40卷 > 3期(pp:0305001--1)

基于亚波长光栅结构的硅基液晶器件模型研究

Model of Liquid Crystal on Silicon Device with Sub-Wavelength Grating Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

金(Au)亚波长光栅被溅射到经典硅基液晶(LCoS)的ITO电极上,它与薄液晶盒和底层铝电极组成复合共振波导结构,简称GLCoS。与基于液晶传播效应的LCoS截然不同,在GLCoS中,上电极的表面等离激元与光栅槽中的TM-FP (TM-Fabry Pérot)共振耦合,诱导一个0阶反射的相位调制;铝(Al)电极既是反射背板又与Au光栅、薄液晶盒组成波导,使共振耦合得到增强。在操控光波阵面的同时,GLCoS也作为电控器件,施加电压改变液晶的折射率,进而控制开腔FP的边缘介质条件,达到有源0~2π相位调制。实验结果表明,本文结构可用于1 μm量级像素的相位空间光调制器,在高空间带宽积的全息视频显示中具有广阔的应用前景。

Abstract

Herein, a sub-wavelength gold (Au) grating is sputtered onto an indium tin oxide electrode of a classical liquid crystal on silicon (LCoS). After it is mounted on a thin liquid-crystal cell with a bottom aluminum electrode, a composite resonant waveguide structure, namely GLCoS, is created. In contrast to LCoS that operates based on liquid-crystal propagation effects, in the GLCoS, the surface plasmon of the upper electrode is resonantly coupled with a TM-Fabry-Pérot (TM-FP) resonator in the grating slits to induce a phase modulation of zero-order reflection. The aluminum electrode acts as a reflective backing plate and contributes the waveguide with the Au grating and thin liquid-crystal cell, which enhances the resonance coupling. While acting as an optical device to control the wavefront, the GLCoS also operates as an electronic control device, applying voltage to change the refractive index of the liquid crystal cell; it can control the dielectric condition of the open cavity FP at the boundary to achieve an active 0--2π phase modulation. The experimental results show that the proposed GLCoS structure can be used in phase-spatial light modulators with the 1-μm-level pixel, and it has prospects for application in holographic video displays with high spatial bandwidth product.

补充资料

中图分类号:O436

DOI:

所属栏目:衍射与光栅

基金项目:国家自然科学基金、安徽省自然科学基金、安徽省高等学校自然科学项目;

收稿日期:2019-09-02

修改稿日期:2019-10-12

网络出版日期:2020-02-01

作者单位    点击查看

沈川:安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
韦穗:安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
虞海秀:安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
陶波:安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601

联系人作者:韦穗(swei@ahu.edu.com)

备注:国家自然科学基金、安徽省自然科学基金、安徽省高等学校自然科学项目;

【1】Memmolo P, Bianco V, Merola F, et al. Breakthroughs in photonics 2013: holographic imaging [J]. IEEE Photonics Journal. 2014, 6(2): 0701106.

【2】Shen C. Research on system and device for LCoS-based holographic video display [D]. Hefei: Anhui University. 2015.
沈川. 基于硅基液晶的全息视频显示系统与器件研究 [D]. 合肥: 安徽大学. 2015.

【3】Qaderi K, Smalley D E. Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays [J]. Optics Express. 2016, 24(18): 20831-20841.

【4】Lalanne P, Yan W, Vynck K, et al. Light interaction with photonic and plasmonic resonances [J]. Laser & Photonics Reviews. 2018, 12(5): 1700113.

【5】Genevet P, Capasso F, Aieta F, et al。 Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]。 Optica。 2017, 4(1): 139-152。

【6】Chen Y, Tian Y N, He L, et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure [J]. Chinese Journal of Lasers. 2018, 45(1): 0110001.
陈颖, 田亚宁, 何磊, 等. 亚波长金属光栅/电介质/金属混合波导传感结构的研究 [J]. 中国激光. 2018, 45(1): 0110001.

【7】Quaranta G, Basset G. Martin O J F, et al. Recent advances in resonant waveguide gratings [J]. Laser & Photonics Reviews. 2018, 12(9): 1800017.

【8】Collin S, Pardo F, Teissier R, et al。 Horizontal and vertical surface resonances in transmission metallic gratings [J]。 Journal of Optics A: Pure and Applied Optics。 2002, 4(5): S154-S160。

【9】Anwar R S, Ning H S, Mao L F. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes [J]. Digital Communications and Networks. 2018, 4(4): 244-257.

【10】Kraft M, Luo Y, Maier S A, et al。 Designing plasmonic gratings with transformation optics [J]。 Physical Review X。 2015, 5(3): 031029。

【11】Huang C P, Chan C T. Deep subwavelength Fabry-Perot resonances [J]. EPJ Applied Metamaterials. 2014, 1: 2.

【12】Huang C P, Yin X G, Zhang Y, et al. Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating [J]. Physical Review B. 2012, 85(23): 235410.

【13】Zhang M H, Shen C, Zhu W L, et al. Fabry-Perot resonance on aluminum sub-wavelength gratings for holographic display device [J]. Chinese Journal of Electron Devices. 2018, 41(4): 833-838.
张明华, 沈川, 朱文亮, 等. 面向全息视频显示的深亚波长光栅耦合结构 [J]. 电子器件. 2018, 41(4): 833-838.

【14】Zhu W L, Shen C, Zhang M H, et al。 Architectural design of deep metallic sub-wavelength grating for practical holography display [J]。 Proceedings of SPIE。 2017, 10460: 104601E。

【15】Hu H T, Wang G Z, Wei S, et al. Liquid crystal phase modulator based on deep sub-grating structure [J]. Proceedings of SPIE. 2018, 10845: 108450F.

【16】Zhang J Q, Kosugi Y, Otomo A, et al. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer [J]. Applied Physics Letters. 2018, 113(23): 231102.

【17】Lochbihler H, Depine R。 Highly conducting wire gratings in the resonance region [J]。 Applied Optics。 1993, 32(19): 3459-3465。

【18】Huang C P, Wang S B, Yin X G, et al。 Enhanced electromagnetic pressure in a sandwiched reflection grating [J]。 Physical Review B。 2012, 86(8): 085446。

【19】Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures [J]. Journal of Modern Optics. 1996, 43(10): 2063-2085.

【20】Sheng P, Stepleman R S, Sanda P N。 Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations [J]。 Physical Review B。 1982, 26(6): 2907-2916。

【21】Porto J A. García-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits [J]. Physical Review Letters. 1999, 83(14): 2845-2848.

【22】Polyakov A, Zolotorev M, Schuck P J, et al. Collective behavior of impedance matched plasmonic nanocavities [J]. Optics Express. 2012, 20(7): 7685-7693.

引用该论文

Shen Chuan,Wei Sui,Yu Haixiu,Tao Bo. Model of Liquid Crystal on Silicon Device with Sub-Wavelength Grating Structure[J]. Acta Optica Sinica, 2020, 40(3): 0305001

沈川,韦穗,虞海秀,陶波. 基于亚波长光栅结构的硅基液晶器件模型研究[J]. 光学学报, 2020, 40(3): 0305001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

财神汇彩票计划群 福建11选5开奖 众彩票计划群 万家彩票计划群 中华彩票网 山东11选5计划 极速赛车的龙虎怎么买 众盈彩票APP 福建11选5 爱彩票计划群