首页 > 论文 > 中国激光 > 46卷 > 12期(pp:1214002--1)

基于超材料的太赫兹偏振不敏感宽带吸波器

Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种太赫兹频段偏振不敏感宽带吸波器,吸收谱半峰全宽(FWHM)为2.29 THz,吸收率在97%以上的带宽约为1.65 THz,在某些谐振频率点的吸收率可达99.9%,实现了近100%的完美吸收。该吸波器将3层结构相同但尺寸不同的周期单元堆叠,有效扩展了带宽。分析了吸收机理,讨论了不同结构参数对吸收性能的影响。仿真结果表明,该吸波器具有与偏振无关的吸收特性,可在一定的入射角度范围内保持较宽的带宽。具有偏振不敏感特性的宽带高吸收率太赫兹吸波器在太赫兹成像、太赫兹波探测、电磁隐身等应用中具有非常重要的研究价值。

Abstract

A terahertz polarization-insensitive broadband absorber is designed. Its absorption spectrum''s full width at half maximum (FWHM) is 2.29 THz, and the bandwidth is about 1.65 THz when the absorptivity is more than 97%. Further, the absorptivity becomes 99.9% at some resonant frequencies, indicating that it can achieve a perfect absorptivity of approximately 100%. The absorber stacks three layers of periodic units exhibiting the same structure but different sizes, and it can effectively expand the bandwidth. This study analyzes the absorption mechanism and discusses the influences of different parameters on its performance. The simulation results denote that the absorption characteristics of the absorber are polarization-independent and that it can maintain a wide bandwidth over a certain incident angle range. This polarization-insensitive broadband terahertz absorber that exhibits high absorptivity has significant research value in terahertz imaging, terahertz wave detection, electromagnetic stealth, and other such applications.

补充资料

DOI:

所属栏目:太赫兹技术

基金项目:国家自然科学基金;

收稿日期:2019-07-08

修改稿日期:2019-08-22

网络出版日期:2019-12-01

作者单位    点击查看

郝梦真:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
延凤平:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
王伟:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
杜雪梅:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
霍红:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:延凤平(fpyan@bjtu.edu.cn)

备注:国家自然科学基金;

【1】Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber [J]. Journal of Physics D: Applied Physics. 2010, 43(22): 225102.

【2】Kakenov N, Balci O, Takan T, et al. Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene [J]. ACS Photonics. 2016, 3(9): 1531-1535.

【3】He Y X, Wang Y Y, Xu D G, et al。 High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation [J]。 Applied Physics B。 2018, 124(1): 16。

【4】Joseph C S, Yaroslavsky A N, Neel V A, et al。 Continuous wave terahertz transmission imaging of nonmelanoma skin cancers [J]。 Lasers in Surgery and Medicine。 2011, 43(6): 457-462。

【5】Yeo W G。 Terahertz spectroscopic characterization and imaging for biomedical applications [D]。 USA: The Ohio State University。 2015。

【6】Hu Y, Huang P, Guo L T, et al. Terahertz spectroscopic investigations of explosives [J]. Physics Letters A. 2006, 359(6): 728-732.

【7】Jansen C, Wietzke S, Peters O, et al. Terahertz imaging: applications and perspectives [J]. Applied Optics. 2010, 49(19): E48-E57.

【8】Islam M S, Sultana J, Rifat A A, et al。 Terahertz sensing in a hollow core photonic crystal fiber [J]。 IEEE Sensors Journal。 2018, 18(10): 4073-4080。

【9】Llatser I, Mestres A, Abadal S, et al。 Time-and frequency-domain analysis of molecular absorption in short-range terahertz communications [J]。 IEEE Antennas and Wireless Propagation Letters。 2015, 14: 350-353。

【10】Chen H T, Padilla W J. Zide J M O, et al. Active terahertz metamaterial devices [J]. Nature. 2006, 444(7119): 597-600.

【11】Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters. 2000, 84(18): 4184-4187.

【12】Pendry J。 Metamaterials in the sunshine [J]。 Nature Materials。 2006, 5(8): 599-600。

【13】Li R B, Du X, Zhang Z H, et al. Ultra-precision machining of optical microstructures [J]. Nanotechnology and Precision Engineering. 2003, 1(1): 57-61.
李荣彬, 杜雪, 张志辉, 等. 光学微结构的超精密加工技术 [J]. 纳米技术与精密工程. 2003, 1(1): 57-61.

【14】Lu M Z, Li W Z, Brown E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures [J]. Optics Letters. 2011, 36(7): 1071-1073.

【15】Al-Naib I. Biomedical sensing with conductively coupled terahertz metamaterial resonators [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2017, 23(4): 4700405.

【16】Liu X Y, Fan K B, Shadrivov I V, et al。 Experimental realization of a terahertz all-dielectric metasurface absorber [J]。 Optics Express。 2017, 25(1): 191-201。

【17】Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials [J]. Chinese Journal of Lasers. 2018, 45(6): 0614001.
孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析 [J]. 中国激光. 2018, 45(6): 0614001.

【18】Li G S, Yan F P, Wang W, et al. Analysis of photosensitive tunable multiband electromagnetically induced transparency metamaterials [J]. Chinese Journal of Lasers. 2019, 46(1): 0114002.
李广森, 延凤平, 王伟, 等. 光敏可调的多波段电磁诱导透明超材料分析 [J]. 中国激光. 2019, 46(1): 0114002.

【19】Rodrigo S G, Martín-Moreno L. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials [J]. Proceedings of SPIE. 2016, 9993: 99930C.

【20】Wilbert D S, Hokmabadi M P, Baughman W, et al。 Highly efficient, polarization insensitive terahertz metamaterial perfect absorber and imaging 。 [C]//IEEE Photonics Conference 2012, September 23-27, 2012, Burlingame, CA, USA。 New York: IEEE。 2012, 228-229。

【21】Grant J, Escorcia-Carranza I, Li C, et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer [J]. Laser & Photonics Reviews. 2013, 7(6): 1043-1048.

【22】Iwaszczuk K, Strikwerda A C, Fan K B, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies [J]. Optics Express. 2012, 20(1): 635-643.

【23】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters. 2008, 100(20): 207402.

【24】Zou T B, Hu F R, Xiao J, et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials [J]. Acta Physica Sinica. 2014, 63(17): 178103.
邹涛波, 胡放荣, 肖靖, 等. 基于超材料的偏振不敏感太赫兹宽带吸波体设计 [J]. 物理学报. 2014, 63(17): 178103.

【25】Ye Y Q, Jin Y, He S L。 Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime [J]。 Journal of the Optical Society of America B。 2010, 27(3): 498-504。

【26】Hendrickson J, Guo J P, Zhang B Y, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures [J]. Optics Letters. 2012, 37(3): 371-373.

【27】Huang L, Chowdhury D R, Ramani S, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band [J]. Optics Letters. 2012, 37(2): 154-156.

【28】Song Z Y, Wang K, Li J W, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials [J]. Optics Express. 2018, 26(6): 7148-7154.

【29】Engheta N。 Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials [J]。 Science。 2007, 317(5845): 1698-1702。

【30】Zhang Q, Bai L H, Bai Z Y, et al. Theoretical analysis and design of a near-infrared broadband absorber based on EC model [J]. Optics Express. 2015, 23(7): 8910-8917.

【31】Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper) [J]. Journal of the Optical Society of America B. 2006, 23(3): 391-403.

【32】Zhou J F, Economon E N, Koschny T, et al. Unifying approach to left-handed material design [J]. Optics Letters. 2006, 31(24): 3620-3622.

引用该论文

Hao Mengzhen,Yan Fengping,Wang Wei,Du Xuemei,Huo Hong. Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214002

郝梦真,延凤平,王伟,杜雪梅,霍红. 基于超材料的太赫兹偏振不敏感宽带吸波器[J]. 中国激光, 2019, 46(12): 1214002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

极速赛车登陆 云顶彩票计划群 顺发彩票计划群 秒速时时彩 上海11选5计划 菠萝彩票计划群 大发彩票计划群 山东11选5开奖 盛源彩票计划群 印象彩票计划群