首页 > 论文 > 光学学报 > 40卷 > 11期(pp:1130001--1)

基于中红外中空波导光纤的呼吸气体CO2实时测量

Real-Time Exhaled CO2 Gas Measurement Using a Mid-Infrared Hollow Waveguide Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于中红外中空波导光纤的呼吸气体CO2测量系统,该系统使用中心波长为2.73 μm的分布式反馈(DFB)激光器结合1 m长的中空波导光纤,采用免标定波长调制光谱技术(CF-WMS)对呼吸气体CO2进行实时测量。采用CF-WMS技术得到的CO2气体浓度与配制所得的标准气体浓度之间的线性度为0.9999,在体积分数为0%~6%的范围内,测量结果与标准气体体积分数值之间的最大绝对误差为0.01%。由CF-WMS 技术反演的CO2体积分数精度为1.01×10 -5,在最佳积分时间26.00 s时,CO2气体的探测极限为1.3×10 -6。基于CF-WMS技术与传统的标定式波长调制技术(WMS)测量CO2气体体积分数的精度和灵敏度,并将两者进行比较,结果发现CF-WMS技术相对于WMS技术,测量精度提高了一倍,CF-WMS技术测量灵敏度为WMS技术测量灵敏度的1.4倍。对呼吸气体CO2实时测量时,采用CF-WMS技术测量的背景CO2体积分数基本稳定在3.8×10 -4左右,呼吸末CO2体积分数稳定在5.7%附近。

Abstract

In this study, we propose an exhaled CO2 gas measurement system based on a mid-infrared hollow waveguide fiber. A distributed-feedback (DFB) laser with a central wavelength of 2.73 μm and a 1-m hollow waveguide fiber were used in the proposed system. The exhaled CO2 gas was measured in real time via calibration-free wavelength modulation spectroscopy (CF-WMS). The linearity with respect to the CO2 concentration obtained via CF-WMS and the prepared standard CO2 gas concentration is 0.9999. Further, when the volume fraction is 0%--6%, the maximum absolute error between the measurement results and the volume fractions of the standard gas is 0.01%. The precision of the CO2 volume fraction retrieved via CF-WMS is 1.01×10 -5, and the CO2 gas detection limit is 1.3×10 -6 at an optimal integration time of 26.00 s. Subsequently, the measurement accuracy and measurement sensitivity of CF-WMS and the traditional calibrated wavelength modulation spectroscopy (WMS) were compared. The obtained results demonstrate that the measurement accuracy and measurement sensitivity of CF-WMS are twice and 1.4 times those of WMS, respectively. The background CO2 volume fraction obtained via CF-WMS is observed to remain stable at approximately 3.8×10 -4 during real-time measurement of the exhaled CO2 gas; further, the CO2 volume fraction observed immediately after exhalation remains stable at approximately 5.7%.

补充资料

中图分类号:O436

DOI:

所属栏目:光谱学

基金项目:江西省科技厅重点研发计划;

收稿日期:2020-01-19

修改稿日期:2020-03-11

网络出版日期:2020-06-01

作者单位    点击查看

马帅:南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063
吴涛:南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063
孙城林:南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063
周韬:南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063
何兴道:南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063

联系人作者:吴涛(wutccnu@nchu.edu.cn)

备注:江西省科技厅重点研发计划;

【1】Craig I M, Cannon B D, Taubman M S, et al. Sensing of gaseous HF at low part-per-trillion levels using a tunable 2.5-μm diode laser spectrometer operating at ambient pressure [J]. Applied Physics B. 2015, 120(3): 505-515.

【2】Xiong B, Du Z H, Liu L, et al. Hollow-waveguide-based carbon dioxide sensor for capnography [J]. Chinese Optics Letters. 2015, 13(11): 111201.

【3】Pal M, Maity A, Pradhan M。 A continuous-wave quantum cascade laser near 7。5 μm combined with 2f-wavelength modulation spectroscopy for trace monitoring of ambient CH4 concentrations [J]。 Laser Physics。 2018, 28(10): 105702。

【4】Maity A, Pal M, Maithani S, et al。 Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7。5 and 8 μm [J]。 Laser Physics Letters。 2018, 15(4): 045701。

【5】Goldenstein C S, Strand C L, Schultz I A, et al。 Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes [J]。 Applied Optics。 2014, 53(3): 356-367。

【6】Westberg J, Wang J Y, Axner O. Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2012, 113(16): 2049-2057.

【7】Reid J, Labrie D。 Second-harmonic detection with tunable diode lasers: comparison of experiment and theory [J]。 Applied Physics B Photophysics and Laser Chemistry。 1981, 26(3): 203-210。

【8】Henningsen J, Simonsen H. Quantitative wavelength-modulation spectroscopy without certified gas mixtures [J]. Applied Physics B: Lasers and Optics. 2000, 70(4): 627-633.

【9】Liu J T C, Jeffries J B, Hanson R K。 Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows [J]。 Applied Physics B。 2004, 78(3/4): 503-511。

【10】Li H J, Rieker G B, Liu X, et al。 Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases [J]。 Applied Optics。 2006, 45(5): 1052-1061。

【11】Duffin K. McGettrick A J, Johnstone W, et al. Tunable diode-laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line shapes [J]. Journal of Lightwave Technology. 2007, 25(10): 3114-3125.

【12】Rieker G B, Jeffries J B, Hanson R K。 Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments [J]。 Applied Optics。 2009, 48(29): 5546-5560。

【13】Li N, Weng C S. Calibration-free wavelength modulation absorption spectrum of gas [J]. Acta Physica Sinica. 2011, 60(7): 070701.
李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究 [J]. 物理学报. 2011, 60(7): 070701.

【14】Sun K, Chao X, Sur R, et al。 Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers [J]。 Measurement Science and Technology。 2013, 24(12): 125203。

【15】Owen K, Farooq A. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f [J]. Applied Physics B. 2014, 116(2): 371-383.

【16】Zhao G, Tan W, Hou J J, et al。 Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser [J]。 Optics Express。 2016, 24(2): 1723-1733。

【17】Zarin A S, Chakraborty A L, Upadhyay A. Absolute noninvasive measurement of CO2 mole fraction emitted by E. coli and S. aureus using calibration-free 2f WMS applied to a 2004 nm VCSEL [J]. Optics Letters. 2017, 42(11): 2138-2141.

【18】Wang B B, Zhou B, Wang H, et al. Study oncalibration-free measurement method for gas concentration based on triangular wave modulation [J]. Acta Optica Sinica. 2017, 37(9): 0930003.
汪步斌, 周宾, 王浩, 等. 基于三角波调制的免标定气体浓度测量方法研究 [J]. 光学学报. 2017, 37(9): 0930003.

【19】Chen J J, Wang G S, Liu K, et al. Calibration-free wavelength modulation absorption spectroscopy for acetylene detection [J]. Acta Optica Sinica. 2018, 38(9): 0930001.
陈家金, 王贵师, 刘锟, 等. 免标定波长调制吸收光谱技术用于乙炔探测的研究 [J]. 光学学报. 2018, 38(9): 0930001.

【20】Gordon I E, Rothman L S, Hill C, et al。 The HITRAN2016 molecular spectroscopic database [J]。 Journal of Quantitative Spectroscopy and Radiative Transfer。 2017, 203: 3-69。

引用该论文

Ma Shuai,Wu Tao,Sun Chenglin,Zhou Tao,He Xingdao. Real-Time Exhaled CO2 Gas Measurement Using a Mid-Infrared Hollow Waveguide Fiber[J]. Acta Optica Sinica, 2020, 40(11): 1130001

马帅,吴涛,孙城林,周韬,何兴道. 基于中红外中空波导光纤的呼吸气体CO2实时测量[J]. 光学学报, 2020, 40(11): 1130001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

大乐购彩票计划群 玩极速赛车的技巧 极速快三 智慧彩票投注 极速赛车规则 内蒙古11选5走势图 安徽快3走势 快3娱乐平台 极速赛车资金分配 快赢彩票