首页 > 论文 > Photonics Research > 8卷 > 7期(pp:1189-1196)

All-optical PtSe2 silicon photonic modulator with ultra-high stability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

All-optical modulation based on the photothermal effect of two-dimensional (2D) materials shows great promise for all-optical signal processing and communication. In this work, an all-optical modulator with a 2D PtSe2-on-silicon structure based on a microring resonator is proposed and demonstrated utilizing the photothermal effect of PtSe2. A tuning efficiency of 0.0040 nm · mW?1 is achieved, and the 10%–90% rise and decay times are 304 μs and 284 μs, respectively. The fabricated device exhibits a long-term air stability of more than 3 months. The experimental results prove that 2D PtSe2 has great potential for optical modulation on a silicon photonic platform.

补充资料

DOI:

所属栏目:Research Articles

基金项目:National Key Research and Development Project of China; National Natural Science Foundation of China10.13039/501100001809;

收稿日期:2020-03-12

录用日期:2020-05-21

网络出版日期:2020-05-21

作者单位    点击查看

Kangkang Wei:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Delong Li:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Zhitao Lin:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Zhao Cheng:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Yuhan Yao:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Jia Guo:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Yunzheng Wang:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Yupeng Zhang:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Jianji Dong:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;e-mail: jjdong@mail.hust.edu.cn
Han Zhang:Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China;e-mail: hzhang@szu.edu.cn
Xinliang Zhang:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

联系人作者:Jianji Dong(jjdong@mail.hust.edu.cn); Han Zhang(hzhang@szu.edu.cn);

备注:National Key Research and Development Project of China; National Natural Science Foundation of China10.13039/501100001809;

【1】P。 Minzioni, C。 Lacava, T。 Tanabe, J。 Dong, X。 Hu, G。 Csaba, W。 Porod, G。 Singh, A。 E。 Willner and A。 Almaiman。 Roadmap on all-optical processing。 J。 Opt。 21, (2019)。

【2】Q. Xu, B. Schmidt, S. Pradhan and M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature. 435, 325-327(2005).

【3】X. Wang, A. Lentine, C. DeRose, A. L. Starbuck, D. Trotter, A. Pomerene and S. Mookherjea. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect. Opt. Express. 24, 23081-23093(2016).

【4】M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu and X. Cai. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics. 13, 359-364(2019).

【5】W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong and H. Wang. Ultrafast all-optical graphene modulator. Nano Lett. 14, 955-959(2014).

【6】Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge and Y. Song. All‐optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12, (2018).

【7】K. Wu, C. Guo, H. Wang, X. Zhang, J. Wang and J. Chen. All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt. Express. 25, 17639-17649(2017).

【8】F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello and M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780-793(2014).

【9】F. Xia, H. Wang, D. Xiao, M. Dubey and A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics. 8, 899-907(2014).

【10】K。 Wu, Y。 Wang, C。 Qiu and J。 Chen。 Thermo-optic all-optical devices based on two-dimensional materials。 Photon。 Res。 6, C22-C28(2018)。

【11】X。 Gan, C。 Zhao, Y。 Wang, D。 Mao, L。 Fang, L。 Han and J。 Zhao。 Graphene-assisted all-fiber phase shifter and switching。 Optica。 2, 468-471(2015)。

【12】Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang and H. Zhang. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, (2019).

【13】J. S. Fandi?o, P. Mu?oz, D. Doménech and J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics. 11, 124-129(2017).

【14】D. Marpaung, J. Yao and J. Capmany. Integrated microwave photonics. Nat. Photonics. 13, 80-90(2019).

【15】V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson. All-optical control of light on a silicon chip. Nature. 431, 1081-1084(2004).

【16】M。 Miscuglio, A。 Mehrabian, Z。 Hu, S。 I。 Azzam, J。 George, A。 V。 Kildishev, M。 Pelton and V。 J。 Sorger。 All-optical nonlinear activation function for photonic neural networks [Invited]。 Opt。 Mater。 Express。 8, 3851-3863(2018)。

【17】S. I. Azzam and A. V. Kildishev. Time-domain dynamics of reverse saturable absorbers with application to plasmon-enhanced optical limiters. Nanophotonics. 8, 145-151(2018).

【18】X。 Chen, Y。 Chen, Y。 Shi, M。 Yan and M。 Qiu。 Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater。 Plasmonics。 9, 1197-1205(2014)。

【19】X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski and M. Qiu. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express. 22, 25233-25241(2014).

【20】H. Gong, X. Chen, Y. Qu, Q. Li, M. Yan and M. Qiu. Photothermal switching based on silicon Mach-Zehnder interferometer integrated with light absorber. IEEE Photonics J. 8, (2016).

【21】Z. Shi, L. Gan, T.-H. Xiao, H.-L. Guo and Z.-Y. Li. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics. 2, 1513-1518(2015).

【22】C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu and J. Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep. 7, (2017).

【23】M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba and M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics. 14, 37-43(2020).

【24】H. Wang, N. Yang, L. Chang, C. Zhou, S. Li, M. Deng, Z. Li, Q. Liu, C. Zhang, Z. Li and Y. Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon. Res. 8, 468-474(2020).

【25】B. Yan, B. Zhang, H. Nie, G. Li, J. Liu, B. Shi, K. Yang and J. He. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers. Opt. Express. 26, 31657-31663(2018).

【26】R。 R。 Nair, P。 Blake, A。 N。 Grigorenko, K。 S。 Novoselov, T。 J。 Booth, T。 Stauber, N。 M。 Peres and A。 K。 Geim。 Fine structure constant defines visual transparency of graphene。 Science。 320, (2008)。

【27】K。 F。 Mak and J。 Shan。 Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides。 Nat。 Photonics。 10, 216-226(2016)。

【28】B. GuoB. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett. 16, (2018).

【29】A。 Krasnok, S。 Lepeshov and A。 Alú。 Nanophotonics with 2D transition metal dichalcogenides [Invited]。 Opt。 Express。 26, 15972-15994(2018)。

【30】Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H.-T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides and H.-J. Gao. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15, 4013-4018(2015).

【31】H.-P. Komsa and A. V. Krasheninnikov. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B. 88, (2013).

【32】W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto and G. Eda. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627-5634(2013).

【33】Z. Wang, Q. Li, F. Besenbacher and M. Dong. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28, 10224-10229(2016).

【34】H. Huang, S. Zhou and W. Duan. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B. 94, (2016).

【35】K. Zhang, M. Yan, H. Zhang, H. Huang, M. Arita, Z. Sun, W. Duan, Y. Wu and S. Zhou. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B. 96, (2017).

【36】H. Yang, M. Schmidt, V. Süss, M. Chan, F. F. Balakirev, R. D. McDonald, S. S. P. Parkin, C. Felser, B. Yan and P. J. W. Moll. Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2. New J. Phys. 20, (2018).

【37】J. Xie, D. Zhang, X.-Q. Yan, M. Ren, X. Zhao, F. Liu, R. Sun, X. Li, Z. Li and S. Chen. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 6, (2019).

【38】C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme and G. S. Duesberg. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano. 10, 9550-9558(2016).

【39】C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme and G. S. Duesberg. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 18, 1794-1800(2018).

【40】J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li and Q. Bao. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers. ACS Appl. Mater. Interfaces. 10, 21534-21540(2018).

【41】D. Wu, Y. Wang, L. Zeng, C. Jia, E. Wu, T. Xu, Z. Shi, Y. Tian, X. Li and Y. H. Tsang. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics. 5, 3820-3827(2018).

【42】L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S. P. Lau, D. Wu and Y. H. Tsang. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 10, 352-362(2018).

【43】L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo and Y. H. Tsang. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Functional Mater. 28, (2018).

【44】R. Zhuo, L. Zeng, H. Yuan, D. Wu, Y. Wang, Z. Shi, T. Xu, Y. Tian, X. Li and Y. H. Tsang. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12, 183-189(2019).

【45】K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X. Yan, F. Song and J. Tian. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res. 6, 893-899(2018).

【46】. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials. 9, (2016).

【47】Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji and Y. Chai. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, (2017).

【48】M. O’Brien, N. McEvoy, C. Motta, J.-Y. Zheng, N. C. Berner, J. Kotakoski, K. Elibol, T. J. Pennycook, J. C. Meyer, C. Yim, M. Abid, T. Hallam, J. F. Donegan, S. Sanvito and G. S. Duesberg. Raman characterization of platinum diselenide thin films. 2D Mater. 3, (2016).

【49】Z. Huang, W. Zhang, W. Zhang, X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga and Z. Liu. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, (2018).

【50】M。 H。 Tahersima, Z。 Ma, Y。 Gui, S。 Sun, H。 Wang, R。 Amin, H。 Dalir, R。 Chen, M。 Miscuglio and V。 J。 Sorger。 Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics。 Nanophotonics。 8, (2019)。

【51】L. Xin, W. Luna, G. Shiliang, L. Zhiquan and Y. Ming. Doubled temperature measurement range for a single micro-ring sensor. Acta Phys. Sinica. 63, (2014).

【52】R。 Espinola, M。 Tsai, J。 T。 Yardley and R。 Osgood。 Fast and low-power thermooptic switch on thin silicon-on-insulator。 IEEE Photonics Technol。 Lett。 15, 1366-1368(2003)。

【53】Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li and H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 13, (2019).

【54】S。 Yan, X。 Zhu, L。 H。 Frandsen, S。 Xiao, N。 A。 Mortensen, J。 Dong and Y。 Ding。 Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides。 Nat。 Commun。 8, (2017)。

引用该论文

Kangkang Wei, Delong Li, Zhitao Lin, Zhao Cheng, Yuhan Yao, Jia Guo, Yunzheng Wang, Yupeng Zhang, Jianji Dong, Han Zhang, and Xinliang Zhang, "All-optical PtSe2 silicon photonic modulator with ultra-high stability," Photonics Research 8(7), 1189-1196 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

极速赛车开奖是真的吗 98彩票计划群 山东11选5开奖 拉菲彩票计划群 极速赛车登陆 彩客网计划群 极速赛车8码公式 小金棋牌 极速赛车开奖辅助 迅雷彩票计划群