首页 > 论文 > 激光与光电子学进展 > 56卷 > 22期(pp:220001--1)

InP基近红外单光子雪崩光电探测器阵列

Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

单光子雪崩光电探测器(SPAD)具有雪崩增益大、响应速度快、探测效率高、易于集成的特点。SPAD阵列器件可进行弱光三维成像,在生物化学、量子通信、激光雷达等领域具有重要应用。因此开展SPAD器件及阵列探测技术的研究具有非常重要的意义。给出了近红外InGaAs/InP SPAD单元工作原理和阵列结构性能,对暗计数率、探测效率、后脉冲等主要影响因素和器件优化方向进行总结,概述了近年来SPAD阵列器件的主要技术方案,给出了串扰来源和消除方法,并对相关研究单位的技术与结果进行对比。

Abstract

A single photon avalanche photodiode detector (SPAD) has many advantages such as large avalanche gain, fast response, high detection efficiency, and easy integration。 SPAD array devices can be used for low-light three-dimensional imaging; these devices have important applications in fields such as biochemistry, quantum communication, and lidar。 Therefore, it is significant to study the detection technology of SPAD and its array。 In this paper, we review and present the working principle and array structure performance of a near-infrared InGaAs/InP SPAD unit。 We analyze the major influencing factors such as the dark counting rate, detection efficiency, and after pulses; moreover, we investigate the main direction for device optimization。 Further, the main technical schemes of the SPAD array devices used in recent years have been summarized。 We provide the sources of crosstalk and methods for eliminating crosstalk。 In addition, we compare the technologies used and the results of relevant research institutions。

补充资料

DOI:

所属栏目:综述

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2019-04-17

修改稿日期:2019-05-13

网络出版日期:2019-11-01

作者单位    点击查看

刘凯宝:中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100086中国科学院大学材料科学与光电技术学院, 北京 100049
杨晓红:中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100086中国科学院大学材料科学与光电技术学院, 北京 100049
何婷婷:中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100086中国科学院大学材料科学与光电技术学院, 北京 100049
王晖:中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100086中国科学院大学材料科学与光电技术学院, 北京 100049

联系人作者:杨晓红(xhyang@semi.ac.cn)

备注:国家重点研发计划、国家自然科学基金;

【1】Levine B F, Bethea C G and Campbell J C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector. Applied Physics Letters. 46(4), 333-335(1985).

【2】Legré M, Thew R, Zbinden H et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module. Optics Express. 15(13), 8237-8242(2007).

【3】Quantum communications. Bulletin of the Chinese Academy of Sciences. 30(2), 87-90(2016).

【4】Browell E V, Vaughan W R, Hall W M et al. Development of a high-altitude airborne dial system: the Lidar Atmospheric Sensing Experiment (LASE). [C]∥In its 13th International Laser Radar Conference 4 p (SEE N87-10263 01-35), August 11-15, 1986, Toronto, Ontario. USA: NASA. (1986).

【5】Cova S, Ghioni M and Rech I. Photon counting and timing detector modules for single-molecule spectroscopy and DNA analysis. [C]∥The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004., November 11-11, 2004, Rio Grande, Puerto Rico. New York: IEEE. 70-71(2004).

【6】Stellari F, Song P L and Weger A J。 Single photon detectors for ultra low voltage time-resolved emission measurements。 IEEE Journal of Quantum Electronics。 47(6), 841-848(2011)。

【7】Hadfield R H。 Single-photon detectors for optical quantum information applications。 Nature Photonics。 3(12), 696-705(2009)。

【8】Buller G S and Collins R J. Single-photon generation and detection. Measurement Science and Technology. 21(1), (2010).

【9】Eisaman M D, Fan J, Migdall A et al. Invited review article: single-photon sources and detectors. Review of Scientific Instruments. 82(7), (2011).

【10】Melchior H and Lynch W T. Signal. ED-. noise response of high speed germanium avalanche photodiodes. IEEE Transactions on Electron Devices. 13(12), 829-838(1966).

【11】Dash W C and Newman R. Intrinsic optical absorption in single-crystal germanium and silicon at 77°K and 300°K. Physical Review. 99(4), 1151-1155(1955).

【12】Chi N, Lu X Y, Wang C et al. High-speed visible light communication based on LED. Chinese Journal of Lasers. 44(3), (2017).
迟楠, 卢星宇, 王灿 等. 基于LED的高速可见光通信. 中国激光. 44(3), (2017).

【13】Zhu F and Wang Q. Quantum key distribution protocol based on heralded single photon source. Acta Optica Sinica. 34(6), (2014).
朱峰, 王琴. 基于指示单光子源的量子密钥分配协议. 光学学报. 34(6), (2014).

【14】Comandar L C, Fr hlich B, Dynes J F et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. Journal of Applied Physics. 117(8), (2015).

【15】Donnelly J P and Duerr E K. McIntosh K A, et al. Design considerations for 1.06-μm InGaAsP-InP Geiger-mode avalanche photodiodes. IEEE Journal of Quantum Electronics. 42(8), 797-809(2006).

【16】Itzler M A, Jiang X D, Entwistle M et al. Advances in InGaAsP-based avalanche diode single photon detectors. Journal of Modern Optics. 58(3/4), 174-200(2011).

【17】Jiang X D, Itzler M A, Ben-Michael R et al. InGaAsP-InP avalanche photodiodes for single photon detection. IEEE Journal of Selected Topics in Quantum Electronics. 13(4), 895-905(2007).

【18】Jiang X D and Itzler M. O’Donnell K, et al. InP-based single-photon detectors and Geiger-mode APD arrays for quantum communications applications. IEEE Journal of Selected Topics in Quantum Electronics. 21(3), 5-16(2015).

【19】Jensen K E, Hopman P I, Duerr E K et al. Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 μm wavelength. Applied Physics Letters. 88(13), (2006).

【20】Shangguan M J. Laser remote sensing with 1.5 μm single photon detectors. Hefei: University of Science and Technology of China. (2017).
1.5 μm单光子探测器在激光遥感中的应用. 合肥: 中国科学技术大学. (2017).

【21】Itzler M A, Ben-Michael R, Hsu C F et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications. Journal of Modern Optics. 54(2/3), 283-304(2007).

【22】Liu J L. Design and performance study of single-photon detectors based on InGaAs(P)/InP PADs. Jinan: Shandong University. (2018).
刘俊良. 基于InGaAs(P)/InP APD的单光子探测器的研制和性能研究. 济南: 山东大学. (2018).

【23】Intermite G. McCarthy A, Warburton R E, et al. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays. Optics Express. 23(26), 33777-33791(2015).

【24】McIntosh K A, Donnelly J P, Oakley D C et al. . InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm. Applied Physics Letters. 81(14), 2505-2507(2002).

【25】Aull B F, Loomis A H, Young D J et al. Geiger-mode avalanche photodiodes for three-dimensional imaging. Lincoln Laboratory Journal. 13(2), 335-350(2002).

【26】Chen C L, Yost D R, Knecht J M et al. Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits. [C]∥2009 IEEE International Conference on 3D System Integration, September 28-30, 2009, San Francisco, CA, USA. New York: IEEE. 10943264, (2009).

【27】Bu Y M, Zeng Z Y, Du X P et al. Research progress of photoelectric mixing technology in laser three-dimensional imaging. Laser & Optoelectronics Progress. 56(8), (2019).
卜禹铭, 曾朝阳, 杜小平 等. 激光三维成像中光电混频技术的研究进展. 激光与光电子学进展. 56(8), (2019).

【28】Schuette D R, Westhoff R C, Loomis A H et al。 Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays。 Proceedings of SPIE。 7681, (2010)。

【29】Glettler J B, Hopman P, Verghese S et al. InP-based single-photon detector arrays with asynchronous readout integrated circuits. Optical Engineering. 47(10), (2008).

【30】Frechette J, Grossmann P J, Busacker D E et al。 Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes。 Proceedings of SPIE。 8375, (2012)。

【31】Verghese S, Donnelly J P, Duerr E K et al。 Arrays of InP-based avalanche photodiodes for photon counting。 IEEE Journal of Selected Topics in Quantum Electronics。 13(4), 870-886(2007)。

【32】Chau Q, Jiang X D, Itzler M A et al。 Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs。 Proceedings of SPIE。 9492, (2015)。

【33】Younger R D, Donnelly J P, Goodhue W D et al. Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays. [C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA. New York: IEEE. 260-261(2016).

【34】Jiang L A and Luu J X. Turbulence mitigation for coherent ladar using photon counting detector arrays. [C]∥Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, June 25-30, 2006, Whistler, Canada. Washington, D.C.: OSA. CWB6, (2006).

【35】Itzler M A, Entwistle M, Owens M et al. Comparison of 32 × 128 and 32 × 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging. Proceedings of SPIE. 8033, (2011).

【36】Itzler M A, Entwistle M, Krishnamachari U et al. SWIR Geiger-mode APD detectors and cameras for 3D imaging. Proceedings of SPIE. 9114, (2014).

【37】Tosi A, Calandri N, Sanzaro M et al。 Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode。 IEEE Journal of Selected Topics in Quantum Electronics。 20(6), 192-197(2014)。

【38】Calandri N, Sanzaro M, Motta L et al。 Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches。 IEEE Photonics Technology Letters。 28(16), 1767-1770(2016)。

【39】Zhang X C, Jiang L Q, Gao X J et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays. Semiconductor Optoelectronics. 36(3), 356-360, 391(2015).
张秀川, 蒋利群, 高新江 等. InGaAs/InP盖革模式雪崩焦平面阵列的研制. 半导体光电. 36(3), 356-360, 391(2015).

【40】Wu G, Zhou C Y, Chen X L et al。 High performance of gated-mode single-photon detector at 1。55 μm。 Optics Communications。 265(1), 126-131(2006)。

【41】Zhang J, Itzler M A, Zbinden H et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications. 4(5), (2015).

【42】Zheng L X, Yang J H, Liu Z et al。 Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging。 Proceedings of SPIE。 8907, (2013)。

【43】Zheng L X, Wu J, Zhang X C et al. Sensing detection and quenching method for InGaAs single-photon detector. Acta Physica Sinica. 63(10), (2014).
郑丽霞, 吴金, 张秀川 等. InGaAs单光子探测器传感检测与淬灭方式. 物理学报. 63(10), (2014).

【44】Yang J H. The design of fully integrated readout circuit based on avalanche photon diode sensor array. Nanjing: Southeast University. (2014).
杨俊浩. 雪崩光电二极管阵列型全集成传感读出电路设计. 南京: 东南大学. (2014).

【45】Clifton W E, Steele B, Nelson G et al。 Medium altitude airborne Geiger-mode mapping LIDAR system。 Proceedings of SPIE。 9465, (2015)。

引用该论文

Liu Kaibao,Yang Xiaohong,He Tingting,Wang Hui. Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001

刘凯宝,杨晓红,何婷婷,王晖。 InP基近红外单光子雪崩光电探测器阵列[J]。 激光与光电子学进展, 2019, 56(22): 220001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

上海11选5走势 冠军彩票计划群 宏发彩票计划群 平安彩票计划群 北京两步彩APP 广西快3计划 568彩票计划群 k8彩票计划群 百益彩票计划群 极速赛车出码规律