首页 > 论文 > 激光与光电子学进展 > 57卷 > 3期(pp:30103--1)

基于Sahu-Shanmugam和Fournier-Forand体积散射函数的水下激光传输特性分析

Characteristic Analysis of Underwater Laser Propagation Based on Sahu-Shanmugam and Fournier-Forand Volume Scattering Functions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

结合Sahu-Shanmugam和Fournier-Forand体积散射函数,使用蒙特卡罗方法建立水下激光传输信道模型,利用该模型分析了接收端的光束扩展特性。研究了三种典型水域下,接收视场角和接收面直径对光束功率密度的影响,以及不同接收距离下光束功率密度的分布特性。结果表明:随着水域散射系数的增大和传输距离的增加,会加剧光束分布扩展;随着接收面直径的增大,光束功率密度的变化趋势逐渐减小,光束功率密度幅值随着接收视场角的增大而增加;随着传输距离的增加,光束功率密度分布逐渐离散。这些结果为水下定位或水下接收机等设计提供参考。

Abstract

Combined with Sahu-Shanmugam and Fournier-Forand volume scattering functions, a simulated model of underwater laser transmission channel is built with Monte Carlo method, and the model is used to analyze the beam extension characteristics at the receiving end. The effects of received field of view and the diameter of receiver on the power density of the beam, and the distribution characteristics of beam power density under different receiving distances are studied under three typical waters. The results show: with the increase of scattering coefficient in the water area and the increase of transmission distance, the beam distribution expansion is intensified; with the increase of diameter of receiving surface, the variation trend of the beam power density decreases gradually, and the amplitude of the beam power density increases as the increasing receiving field angle; with the increase of transmission distance, the distribution of beam power density becomes more discrete. The results provide a reference for underwater positioning or underwater receiver design.

补充资料

中图分类号:TN929.1

DOI:

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金、广西精密导航技术与应用重点实验室基金、桂林电子科技大学研究生科技创新项目;

收稿日期:2019-08-07

修改稿日期:2019-08-27

网络出版日期:2020-02-01

作者单位    点击查看

李天松:桂林电子科技大学信息与通信学院, 广西 桂林 541004广西精密导航技术与应用重点实验室, 广西 桂林 541004
高翔:桂林电子科技大学信息与通信学院, 广西 桂林 541004广西精密导航技术与应用重点实验室, 广西 桂林 541004
周晓燕:桂林电子科技大学信息与通信学院, 广西 桂林 541004
阳荣凯:广西精密导航技术与应用重点实验室, 广西 桂林 541004

联系人作者:李天松(lts@guet.edu.cn); 高翔(2669162635@qq.com);

备注:国家自然科学基金、广西精密导航技术与应用重点实验室基金、桂林电子科技大学研究生科技创新项目;

【1】Li X Z, Miao X C, Qi X, et al. Laser atmosphere-seawater channel transmission characteristics under complicated sea conditions [J]. Acta Optica Sinica. 2018, 38(3): 0301002.
李祥震, 苗希彩, 亓晓, 等. 复杂海况下激光气-海信道传输特性 [J]. 光学学报. 2018, 38(3): 0301002.

【2】Chen F, Chen L Y, Xue M Q. Analysis of absorption and scatter characteristics of the sea on airborne laser sounding [J]. Acta Photonica Sinica. 1997, 26(6): 561-565.
陈烽, 陈良益, 薛鸣球. 机载激光测深海洋传输通道的吸收和散射特性分析 [J]. 光子学报. 1997, 26(6): 561-565.

【3】Shen N, Guo J, Zhang X J. Influence of bit-error rate in laser underwater communications [J]. Infrared and Laser Engineering. 2012, 41(11): 2935-2939.
沈娜, 郭婧, 张祥金. 激光水下通讯误码率的影响 [J]. 红外与激光工程. 2012, 41(11): 2935-2939.

【4】Yu X P, Hu Y A, Liu L, et al. Propagation characteristics of underwater laser based on multiple scattering and small scattering angles approximation [J]. Acta Photonica Sinica. 2015, 44(11): 1101002.
俞雪平, 胡云安, 刘亮, 等. 基于多次散射和小散射角近似的水下激光传播特性 [J]. 光子学报. 2015, 44(11): 1101002.

【5】Zhang Y L, Wang Y M, Huang A P. Influence of suspended particles based on Mie theory on underwater laser transmission [J]. Chinese Journal of Lasers. 2018, 45(5): 0505002.
张莹珞, 王英民, 黄爱萍. 米氏理论下悬浮粒子对水下激光传输的影响 [J]. 中国激光. 2018, 45(5): 0505002.

【6】Wang F, Yin Y F, Yang Y. Analysis of the influence of seawater channel laser transmission distance on the receiver sensitivity Study on Optical Communications[J]. 0, 2017(2): 23-26.
王菲, 阴亚芳, 杨祎. 海水信道激光传输距离对接收光功率的影响分析 光通信研究[J]. 0, 2017(2): 23-26.

【7】Wei A H, Zhao W, Han B, et al. Simulative study of optical pulse propagation in water based on Fournier-Forand and Henyey-Greenstein volume scattering functions [J]. Acta Optica Sinica. 2013, 33(6): 0601003.
魏安海, 赵卫, 韩彪, 等. 基于Fournier-Forand和Henyey-Greenstein体积散射函数的水中光脉冲传输仿真分析 [J]. 光学学报. 2013, 33(6): 0601003.

【8】Guan Y J, He F T, Yang Y, et al. Channel characteristics analysis of ocean underwater laser communication based on Monte Carlo [J]. Optical Communication Technology. 2016, 40(12): 52-54.
关云静, 贺锋涛, 杨祎, 等. 基于蒙特卡洛海洋水下激光通信信道特性分析 [J]. 光通信技术. 2016, 40(12): 52-54.

【9】Huang A P, Zhang Y L, Tao L W. Monte Carlo simulation on channel characteristics of underwater laser communications [J]. Infrared and Laser Engineering. 2017, 46(4): 0422004.
黄爱萍, 张莹珞, 陶林伟. 蒙特卡洛仿真的水下激光通信信道特性 [J]. 红外与激光工程. 2017, 46(4): 0422004.

【10】, et al. Study on properties of light scattering based on Mie scattering theory for suspended particles in water [J]. Laser & Optoelectronics Progress. 2015, 52(1): 013001.
Vo Q S, Feng P, Tang B, Vo Q S. 冯鹏, 汤斌, 等. 基于米氏散射理论的水中悬浮颗粒物散射特性计算 [J]. 激光与光电子学进展. 2015, 52(1): 013001.

【11】Petzold T J. Volume scattering functions for selected ocean waters[R] . California: University of California. 1972.

【12】Rapsomanikis A N, Eleftheriou A, Mikeli M, et al。 A Monte Carlo simulator dedicated to a time-resolved optical tomographic modality based on the Henyey-Greenstein phase function 。 [C]∥2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 31-November 7, 2015, San Diego, CA, USA。 New York: IEEE。 2015, 16356874。

【13】Haltrin V I. An analytic Fournier-Forand scattering phase function as an alternative to the Henyey-Greenstein phase function in hydrologic optics . Cat. No.98CH36174), July 6-10, 1998, Seattle, WA, USA. New York: IEEE. 1998, 910-912.

【14】Han B, Liu J F, Zhou S J, et al. A simulated model for analyzing backscattering of laser pulse propagating in water based on Fournier Forand volume scattering function [J]. Acta Photonica Sinica. 2011, 40(10): 1590-1594.
韩彪, 刘继芳, 周少杰, 等. 基于Fournier Forand体积散射函数的水中激光脉冲后向散射特性分析模型 [J]. 光子学报. 2011, 40(10): 1590-1594.

【15】Fournier G R, Jonasz M. Computer-based underwater imaging analysis [J]. Proceedings of SPIE. 1999, 3761: 62-70.

【16】Sahu S K, Shanmugam P. Scattering phase function for particulates-in-water: modeling and validation [J]. Proceedings of SPIE. 2016, 9882: 98821H.

【17】Sahu S K, Shanmugam P。 Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles [J]。 Optics Express。 2015, 23(17): 22291-22307。

【18】Cox Jr。 W C。 Simulation, modeling, and design of underwater optical communication systems [M]。 Raleigh: North Carolina State University。 2012。

【19】Kirk J T O. Monte Carlo procedure for simulating the penetration of light into natural waters Technical Paper-Commonwealth Scientific and [Z]. Industrial Research Organization. 1981.

【20】Zhao C H, Zhang H M, Song J. Finger print based visible light indoor localization method [J]. Chinese Journal of Lasers. 2018, 45(8): 0806002.
赵楚韩, 张洪明, 宋健. 基于指纹的室内可见光定位方法 [J]. 中国激光. 2018, 45(8): 0806002.

【21】Li T S, Yang R K, Huang Y H, et al. Simulation and analysis of time delay characteristics of underwater laser pulse [J]. Laser & Optoelectronics Progress. 2019, 56(11): 110102.
李天松, 阳荣凯, 黄艳虎, 等. 水下激光脉冲时延特性的仿真分析 [J]. 激光与光电子学进展. 2019, 56(11): 110102.

引用该论文

Li Tiansong,Gao Xiang,Zhou Xiaoyan,Yang Rongkai. Characteristic Analysis of Underwater Laser Propagation Based on Sahu-Shanmugam and Fournier-Forand Volume Scattering Functions[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030103

李天松,高翔,周晓燕,阳荣凯。 基于Sahu-Shanmugam和Fournier-Forand体积散射函数的水下激光传输特性分析[J]。 激光与光电子学进展, 2020, 57(3): 030103

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

上海11选5走势 港龙彩票计划群 广发彩票计划群 山东群英会走势图 爱彩票计划群 广西快3走势 上海11选5 极速赛车在哪里开奖 山东11选5 宝马彩票计划群