首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1011002--1)

光场显微成像微尺度流场三维重建方法研究

Three-Dimensional Reconstruction of Micro-Scale Flow Field Based on Light Field Microscopic Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现有三维显微粒子图像测速系统在获取示踪粒子空间位置时需要扫描或多视角成像,导致系统复杂,无法实现微尺度流动瞬态三维速度场测量等问题,为此,提出一种基于微透镜阵列的光场显微粒子图像测速技术。该技术利用单个相机一次曝光即可获取微流场中示踪粒子的瞬时光场信息,进一步结合基于波动光学理论的光场显微成像的点扩展函数模型,用反卷积算法重建出微尺度流场中示踪粒子的瞬时空间位置分布。分析讨论了重建分辨率和空间位置误差,并开展了微尺度流场重建实验研究,验证了光场显微成像微尺度流场重建方法的可行性。

Abstract

The existing three-dimensional micro-particle image velocimetry systems obtain the spatial position of tracer particles through scanning or imaging from multiple perspectives, which leads to the complexity of the system and difficulty in making an instantaneous measurement of three-dimensional velocity in micro-scale flow. In this paper, a light field micro-particle image velocimetry technique based on a microlens array is proposed. In this technique, the instantaneous light field information of tracer particles in the micro-scale flow field can be recorded by a single camera in a single photographic exposure. Further, in combination with the point spread function model of the light field microscopic imaging system calculated by wave optics theory, the instantaneous spatial position distribution of tracer particles in the micro-scale flow field can be reconstructed by a deconvolution method. The reconstruction resolution and the spatial position error are analyzed and discussed. Experiments on micro-scale flow field reconstruction are carried out, and the feasibility of the reconstruction method for light field microscopic imaging is verified.

补充资料

DOI:

所属栏目:成像系统

基金项目:国家自然科学基金; 南京市质量技术监督局重点科技计划项目;

收稿日期:2019-04-04

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

宋祥磊:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
李舒:南京市计量监督检测院科技发展部, 江苏 南京 210037
顾梦涛:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
张彪:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
许传龙:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096

联系人作者:许传龙(chuanlongxu@seu.edu.cn)

备注:国家自然科学基金; 南京市质量技术监督局重点科技计划项目;

【1】Rivet C, Lee H, Hirsch A et al. Microfluidics for medical diagnostics and biosensors [J]. Chemical Engineering Science. 2011, 66(7): 1490-1507.

【2】Michelsen U. Microfluidics in medical applications [J]. Medical Device Technology. 2007, 18(3): 12-14.

【3】Horrocks M H, Tosatto L, Dear A J et al。 Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers [J]。 Analytical Chemistry。 2015, 87(17): 8818-8826。

【4】Wang G L, Yang D W, Wang Y et al. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling [J]. Sensors. 2015, 15(4): 9547-9562.

【5】Santiago J G, Wereley S T, Meinhart C D et al. A particle image velocimetry system for microfluidics [J]. Experiments in Fluids. 1998, 25(4): 316-319.

【6】Chao S H, Holl M R, Koschwanez J H et al. Velocity measurement in microchannels with a laser confocal microscope and particle linear image velocimetry [J]. Microfluidics and Nanofluidics. 2005, 1(2): 155-160.

【7】Lindken R, Westerweel J and Wieneke B. Stereoscopic micro particle image velocimetry [J]. Experiments in Fluids. 2006, 41(2): 161-171.

【8】Tien W H, Dabiri D and Hove J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows [J]. Experiments in Fluids. 2014, 55(3): 1684.

【9】Ren N, Levoy M, Bredif M et al. 2019-03-25] . http: ∥graphics.stanford.edu/papers/lfcamera/. 2005,

【10】Levoy M, Ng R, Adams A et al. Light field microscopy [J]. ACM Transactions on Graphics. 2006, 25(3): 924-934.

【11】Sun F S and Han X. Super-resolution algorithm based on precise color vector constraint of lightfield camera [J]. Acta Optica Sinica. 2019, 39(3): 0301001.
孙福盛, 韩燮. 光场相机精确色彩矢量约束下的超分辨率算法 [J]. 光学学报. 2019, 39(3): 0301001.

【12】Shi S X, Ding J F, New T H et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique [J]. Experiments in Fluids. 2017, 58(7): 78.

【13】Fahringer T W, Lynch K P and Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera [J]. Measurement Science and Technology. 2015, 26(11): 115201.

【14】Gershun A. The light field [M]. Massachusetts, Cambridge: Massachusetts Institute of Technology. 1939, 51-151.

【15】Levoy M and Hanrahan P。 Light field rendering 。 [C]∥The 23rd Annual Conference on Computer Graphics and Interactive Techniques。 New York: ACM。 1996, 31-42。

【16】Sarder P and Nehorai A。 Deconvolution methods for 3-D fluorescence microscopy images [J]。 IEEE Signal Processing Magazine。 2006, 23(3): 32-45。

【17】McNally J G, Karpova T, Cooper J et al。 。 Three-dimensional imaging by deconvolution microscopy [J]。 Methods。 1999, 19(3): 373-385。

【18】Lucy L B. An iterative technique for the rectification of observed distributions [J]. The Astronomical Journal. 1974, 79: 745-754.

【19】Richardson W H. Bayesian-based iterative method of image restoration [J]. Journal of the Optical Society of America. 1972, 62(1): 55-59.

【20】Gu M. Advanced optical imaging theory [M]. Berlin, Heidelberg: Springer. 2000, 55-59.

【21】Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing. 2004, 13(4): 600-612.

【22】Liang Q T. Physical optics[M]. Beijing: Publishing House of Electronics Industry, 2012, 173-175.
梁铨廷. 物理光学[M]. 4版. 北京: 电子工业出版社, 2012, 173-175.

【23】Deem E A, Zhang Y, Cattafesta L N et al。 On the resolution of plenoptic PIV [J]。 Measurement Science and Technology。 2016, 27(8): 084003。

引用该论文

Song Xianglei,Li Shu,Gu Mengtao,Zhang Biao,Xu Chuanlong. Three-Dimensional Reconstruction of Micro-Scale Flow Field Based on Light Field Microscopic Imaging[J]. Acta Optica Sinica, 2019, 39(10): 1011002

宋祥磊,李舒,顾梦涛,张彪,许传龙. 光场显微成像微尺度流场三维重建方法研究[J]. 光学学报, 2019, 39(10): 1011002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

秒速赛车是真的吗 爱彩票计划群 福建11选5开奖 彩98彩票计划群 聚发彩票注册 彩票监察计划群 河北快3 极速赛车冠军三码 彩788彩票计划群 彩票高賠率好平台