首页 > 论文 > 光学学报 > 40卷 > 3期(pp:0334001--1)

基于点扫描的同步辐射红外三维谱学显微研究

Synchrotron Radiation Infrared Three-Dimensional Microspectroscopy Based on Point Scanning Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

同步辐射红外(SRIR)光具有光谱范围宽、发散角小、亮度高以及信噪比高等优点,结合传统红外谱学技术,采用SRIR谱学显微技术对样品进行红外谱学显微,可以获得样品微米级别的空间光谱信息。利用MiTeGen聚亚酰胺小环作为样品,以上海光源BL01B1线站的SRIR光为光源,通过点扫描采样方式进行同步辐射红外三维谱学显微实验研究。通过获得聚亚酰胺小环在不同角度下的SRIR二维显微光谱信息,选取波数范围为1495~1485 cm -1的显微光谱信息处理,用代数迭代算法对聚亚酰胺小环的化学组分酰胺Ⅱ进行SRIR三维显微重构,获得了完整的三维重构图。实验表明本文方法能够以较高的信噪比重构出样品化学组分的三维红外显微结构。

Abstract

Synchrotron radiation infrared (SRIR) light has the advantages of wide spectral range, small divergence angle, high brightness, and high signal-to-noise ratio. Combined with traditional infrared spectroscopy technology, SRIR microspectroscopy technology is used in infrared spectroscopy microscopy for samples, and the micron-level spatial spectral information of samples can be obtained. By taking an MiTeGen polyimide loop as the sample and using SRIR light from line station BL01B1 of Shanghai synchrotron radiation facility as the light source, we perform the synchrotron radiation infrared three-dimensional (3D) microspectroscopy experiments based on point scanning method. The two-dimensional microspectral information of the MiTeGen polyimide loop under different angles is collected based on point scanning method. The microspectral information in the wavenumber range of 1495--1485 cm -1 is selected, SRIR 3D microscopic reconstruction is performed by using algebraic iteration algorithm for the amide Ⅱ chemical component of the polyimide ring, and a whole 3D reconstruction image is obtained. The research shows that this method can reconstruct the 3D infrared microscopic structure of the sample''s chemical components with a high signal-to-noise ratio.

补充资料

中图分类号:O433。1

DOI:

所属栏目:X射线光学

基金项目:国家自然科学基金青年科学基金、国家自然科学基金;

收稿日期:2019-08-30

修改稿日期:2019-10-12

网络出版日期:2020-02-01

作者单位    点击查看

林乐诚:中国科学院上海应用物理研究所, 上海 201800中国科学院大学, 北京 100049
佟亚军:上海科技大学, 上海 201210
吉特:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院上海光源, 上海 201204
彭蔚蔚:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院上海光源, 上海 201204
肖体乔:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院上海光源, 上海 201204
朱化春:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院上海光源, 上海 201204
陈敏:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院上海光源, 上海 201204

联系人作者:朱化春(zhuhuachun@zjlab.org.cn); 陈敏(chenmin@zjlab.org.cn);

备注:国家自然科学基金青年科学基金、国家自然科学基金;

【1】Martin M C, Schade U, Lerch P, et al. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy [J]. TrAC Trends in Analytical Chemistry. 2010, 29(6): 453-463.

【2】Nasse M J, Bellehumeur B, Ratti S, et al. Opportunities for multiple-beam synchrotron-based mid-infrared imaging at IRENI [J]. Vibrational Spectroscopy. 2012, 60: 10-15.

【3】Marcelli A, Cricenti A, Kwiatek W M, et al. Biological applications of synchrotron radiation infrared spectromicroscopy [J]. Biotechnology Advances. 2012, 30(6): 1390-1404.

【4】Reffner J A, Martoglio P A, Williams G P. Fourier transform infrared microscopical analysis with synchrotron radiation: the microscope optics and system performance (invited) [J]. Review of Scientific Instruments. 1995, 66(2): 1298-1302.

【5】Carr G L, Hanfland M, Williams G P。 Midinfrared beamline at the national synchrotron light source port U2B [J]。 Review of Scientific Instruments。 1995, 66(2): 1643-1645。

【6】Carr G L, Reffner J A, Williams G P. Performance of an infrared microspectrometer at the NSLS [J]. Review of Scientific Instruments. 1995, 66(2): 1490-1492.

【7】Duncan W D, Williams G P。 Infrared synchrotron radiation from electron storage rings [J]。 Applied Optics。 1983, 22(18): 2914-2923。

【8】Miller L M, Smith R J. Synchrotrons versus globars, point-detectors versus focal plane arrays: selecting the best source and detector for specific infrared microspectroscopy and imaging applications [J]. Vibrational Spectroscopy. 2005, 38(1/2): 237-240.

【9】Miller L M, Dumas P。 Chemical imaging of biological tissue with synchrotron infrared light [J]。 Biochimica et Biophysica Acta (BBA)-Biomembranes。 2006, 1758(7): 846-857。

【10】Levenson E, Lerch P, Martin M C. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared [J]. Journal of Synchrotron Radiation. 2008, 15(4): 323-328.

【11】Carr G L, Williams G P. Infrared microspectroscopy with synchrotron radiation [J]. Proceedings of SPIE. 1997, 3153: 51-58.

【12】Dong A C, Messerschmidt R G, Reffner J A, et al. Infrared spectroscopy of a single cell: the human erythrocyte [J]. Biochemical and Biophysical Research Communications. 1988, 156(2): 752-756.

【13】Levenson E, Lerch P, Martin M C. Spatial resolution limits for synchrotron-based infrared spectromicroscopy [J]. Infrared Physics & Technology. 2008, 51(5): 413-416.

【14】Christie F, Mathieson E, Williams P. Fourier transform spectroscopy [J]. Physics Education. 1974, 9(5): 324-330.

【15】Vogel C, Wessel E, Siesler H W. FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(L-lactic acid) and poly(ε-caprolactone) [J]. Biomacromolecules. 2008, 9(2): 523-527.

【16】Unger M, Sedlmair J, Siesler H W, et al。 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend [J]。 Vibrational Spectroscopy。 2014, 75: 169-172。

【17】Yesiltas M, Sedlmair J, Peale R E, et al. Synchrotron-based three-dimensional Fourier-transform infrared spectro-microtomography of Murchison meteorite grain [J]. Applied Spectroscopy. 2017, 71(6): 1198-1208.

【18】Holman H Y N, Martin M C, McKinney W R。 Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations [J]。 Journal of Biological Physics。 2003, 29(2/3): 275-286。

【19】von Aulock F W, Kennedy B M, Schipper C I, et al. 2014, 206/207: 52-64.

【20】Martin M C, Dabat-Blondeau C, Unger M, et al。 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography [J]。 Nature Methods。 2013, 10(9): 861-864。

【21】Nasse M J, Mattson E C, Reininger R, et al. Multi-beam synchrotron infrared chemical imaging with high spatial resolution: beamline realization and first reports on image restoration [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011, 649(1): 172-176.

【22】Mattson E C, Unger M, Manandhar B, et al. Multi-beam synchrotron FTIR chemical imaging: impacts of Schwarzschild objective and spatial oversampling on spatial resolution [J]. Journal of Physics: Conference Series. 2013, 425(14): 142001.

【23】Lewis E N, Treado P J, Reeder R C, et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector [J]. Analytical Chemistry. 1995, 67(19): 3377-3381.

【24】Nasse M J, Walsh M J, Mattson E C, et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams [J]. Nature Methods. 2011, 8(5): 413-416.

【25】Quaroni L, Obst M, Nowak M, et al。 Three-dimensional mid-infrared tomographic imaging of endogenous and exogenous molecules in a single intact cell with subcellular resolution [J]。 Angewandte Chemie International Edition。 2015, 54(1): 318-322。

【26】Zobi F, Obst M. Two- and three-dimensional mid-infrared chemical imaging [J]. CHIMIA International Journal for Chemistry. 2017, 71(1): 32-37.

【27】Andersen A H。 Algebraic reconstruction in CT from limited views [J]。 IEEE Transactions on Medical Imaging。 1989, 8(1): 50-55。

【28】Herman G T, Lent A。 Iterative reconstruction algorithms [J]。 Computers in Biology and Medicine。 1976, 6(4): 273-294。

【29】Nielsen T, Manzke R, Proksa R, et al. Cardiac cone-beam CT volume reconstruction using ART [J]. Medical Physics. 2005, 32(4): 851-860.

【30】Qiu W, Tong J R, Mitchell C N, et al。 New iterative cone beam CT reconstruction software: parameter optimisation and convergence study [J]。 Computer Methods and Programs in Biomedicine。 2010, 100(2): 166-174。

【31】Zhang Z Y, Chen M, Tong Y J, et al。 Performance of the infrared microspectroscopy station at SSRF [J]。 Infrared Physics & Technology。 2014, 67: 521-525。

【32】Ji T, Tong Y J, Zhu H C, et al. The status of the first infrared beamline at Shanghai synchrotron radiation facility [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015, 788: 116-121.

【33】Tong Y J, Ji T, Zhang Z Y, et al. The design and performance of infrared beamline at SSRF [J]. Proceedings of SPIE. 2013, 8910: 89101F.

【34】Zhu H C, Tong Y J, Ji T, et al. Spatial resolution measurement of synchrotron radiation infrared microspectroscopy beamline [J]. Acta Optica Sinica. 2015, 35(4): 0430002.
朱化春, 佟亚军, 吉特, 等. 同步辐射红外谱学显微光束线站的空间分辨率测试 [J]. 光学学报. 2015, 35(4): 0430002.

【35】Gürsoy D, de Carlo F, Xiao X H, et al. TomoPy: a framework for the analysis of synchrotron tomographic data [J]. Journal of Synchrotron Radiation. 2014, 21(5): 1188-1193.

引用该论文

Lin Yuecheng,Tong Yajun,Ji Te,Peng Weiwei,Xiao Tiqiao,Zhu Huachun,Chen Min. Synchrotron Radiation Infrared Three-Dimensional Microspectroscopy Based on Point Scanning Method[J]. Acta Optica Sinica, 2020, 40(3): 0334001

林乐诚,佟亚军,吉特,彭蔚蔚,肖体乔,朱化春,陈敏。 基于点扫描的同步辐射红外三维谱学显微研究[J]。 光学学报, 2020, 40(3): 0334001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

吉林快3代理 99棋牌 内蒙古快3计划 极速赛车出码规律 旺旺彩票计划群 百分百彩票计划群 极速赛车记录 淘彩票计划群 极速赛车出号规律 金巴黎彩票计划群