首页 > 论文 > 中国激光 > 46卷 > 9期(pp:902003--1)

激光-MIG复合焊接热过程与熔池流场的数值分析

Numerical Simulation of Thermal Process and Fluid Flow Field in Laser-MIG Hybrid Weld Pools

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了激光-MIG复合焊接过程的三维瞬态传热和流体流动模型,分析了小孔行为、熔池温度场和流场演变过程的特点,探讨了激光电弧前后相对位置对熔池传热和流动的影响。模型考虑了焊枪倾角对熔滴过渡的影响以及多次反射对激光能量分布的影响。结果表明:小孔壁面向下流动经熔池底部反射后形成后向流动和逆时针环流;后向流动向熔池尾部输运热量和动量,增加熔池体积;而逆时针环流则冲击小孔后壁,降低小孔的稳定性。激光在前时,熔滴和电弧压力作用在小孔后方,并产生两个流动模式:朝向前方和四周的流动。朝向前方的流动增强了逆时针流动对小孔后壁的冲击作用,使得小孔坍塌现象更加严重;朝向四周的流动将热量输运至熔池两侧,增加了焊缝宽度。

Abstract

A three-dimensional (3D) transient heat transfer and fluid flow model for laser-MIG hybrid welding is developed to investigate keyhole dynamics and temperature and fluid flow fields in weld pools. The effect of the laser-arc tandem relative position on the heat transfer and fluid flow of the weld pool is elucidated. The model considers the effect of the welding torch angle on droplet transfer and the effects of multiple reflections on laser energy distribution. The results show that the downward flow along the keyhole wall forms backward flow and counterclockwise circulation after reflection on the bottom of the weld pool. The backward flow transports heat and momentum to the rear portion and increases weld pool volume. The counterclockwise circulation impinges on the keyhole back wall and reduces the keyhole stability. In laser leading configurations, the droplet and arc pressure impact behind the keyhole and cause two flow patterns, namely the forward and outside flows. The forward flow enhances the impingement of counterclockwise circulation on the keyhole back wall, and the collapse of the keyhole becomes more severe. The outside flow transfers heat to both sides of the weld pool and leads to a wider weld.

补充资料

DOI:

所属栏目:激光制造

基金项目:山东省自然科学基金;

收稿日期:2019-04-09

修改稿日期:2019-04-28

网络出版日期:2019-09-01

作者单位    点击查看

吴向阳:中车青岛四方机车车辆股份有限公司, 山东 青岛 266111
徐剑侠:山东大学材料连接技术研究所, 山东 济南 250061
高学松:山东大学材料连接技术研究所, 山东 济南 250061
武传松:山东大学材料连接技术研究所, 山东 济南 250061

联系人作者:武传松(wucs@sdu.edu.cn)

备注:山东省自然科学基金;

【1】Steen W M。 Arc augmented laser processing of materials。 Journal of Applied Physics。 51(11), 5636-5641(1980)。

【2】Gu L, Liu J H and Wang X J. Research and application of laser-arc hybrid welding in shipbuilding Marine Technology. 2005(5), 38-40(0).
辜磊, 刘建华, 汪兴均. 激光-电弧复合焊接技术在船舶制造中的应用研究 造船技术. 2005(5), 38-40(0).

【3】Mahrle A and Beyer E. Hybrid laser beam welding: classification, characteristics, and applications. Journal of Laser Applications. 18(3), 169-180(2006).

【4】Gu S Y, Liu Z J, Zhang P L et al. Appearances and formation mechanism of welds in high-strength steels by high speed laser-arc hybrid welding. Chinese Journal of Lasers. 45(12), (2018).
顾思远, 刘政君, 张培磊 等. 高速激光电弧复合焊接高强钢焊缝的形貌及成形机理. 中国激光. 45(12), (2018).

【5】Shi P F, Huang J, Tantai F L et al. Microstructures and properties of 27SiMn high-strength steel joints by laser-MAG hybrid welding. Chinese Journal of Lasers. 44(10), (2017).
史鹏飞, 黄坚, 澹台凡亮 等. 27SiMn高强钢激光-MAG复合焊接头组织和性能. 中国激光. 44(10), (2017).

【6】Katayama S, Uchiumi S, Mizutani M et al. Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding. Welding International. 21(1), 25-31(2007).

【7】Campana G, Fortunato A, Ascari A et al。 The influence of arc transfer mode in hybrid laser-mig welding。 Journal of Materials Processing Technology。 191(1/2/3), 111-113(2007)。

【8】Hu L H, Huang J, Zhuang K et al. Influence of distance between laser and MIG arc on drop transfer process of CO2 laser-MIG hybrid welding. Transactions of the China Welding Institution. 31(2), 49-52, 115(2010).
胡连海, 黄坚, 庄凯 等. 激光与电弧间距对激光复合焊熔滴过渡的影响. 焊接学报. 31(2), 49-52, 115(2010).

【9】Gao M, Zeng X Y and Hu Q W. Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. Journal of Materials Processing Technology. 184(1/2/3), 177-183(2007).

【10】Tani G, Campana G, Fortunato A et al. The influence of shielding gas in hybrid laser-MIG welding. Applied Surface Science. 253(19), 8050-8053(2007).

【11】He S, Chen H, Cai C et al. Influence of He-Ar mixed shielding gas on laser-MIG hybrid welding characteristic of aluminum alloys. Chinese Journal of Lasers. 45(12), (2018).
何双, 陈辉, 蔡创 等. 氦-氩混合保护气体对铝合金激光-MIG复合焊接特性的影响. 中国激光. 45(12), (2018).

【12】Zhang Z Z and Wu C S. Effect of fluid flow in the weld pool on the numerical simulation accuracy of the thermal field in hybrid welding. Journal of Manufacturing Processes. 20, 215-223(2015).

【13】Gao Z G, Wu Y X and Huang J. Analysis of weld pool dynamic during stationary laser-MIG hybrid welding. The International Journal of Advanced Manufacturing Technology. 44(9/10), 870-879(2009).

【14】Zhou J and Tsai H L. Modeling of transport phenomena in hybrid laser-MIG keyhole welding. International Journal of Heat and Mass Transfer. 51(17/18), 4353-4366(2008).

【15】Cho J H and Na S J. Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding Journal. 88(4), 35-44(2009).

【16】Cho W I, Na S J, Cho M H et al. Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding. Computational Materials Science. 49(4), 792-800(2010).

【17】Zhao L, Sugino T, Arakane G et al. Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding. Science and Technology of Welding and Joining. 14(5), 457-467(2009).

【18】Liu L M, Wang J F and Song G. Hybrid laser-arc welding of AZ31B Mg alloy. Chinese Journal of Lasers. 31(12), 1523-1526(2004).
刘黎明, 王继锋, 宋刚. 激光电弧复合焊接AZ31B镁合金. 中国激光. 31(12), 1523-1526(2004).

【19】Gao Z G, Huang J, Li Y L et al. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding. Transactions of the China Welding Institution. 29(12), 69-73(2008).
高志国, 黄坚, 李亚玲 等. 激光-MIG复合焊中激光与电弧前后位置对焊缝成形的影响. 焊接学报. 29(12), 69-73(2008).

【20】Gao X S, Wu C S, Goecke S F et al. Numerical simulation of temperature field, fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding. Journal of Materials Processing Technology. 242, 147-159(2017).

【21】Zhang H T. Numerical analysis of weld pool and keyhole dynamics in laser+GMAW hybrid welding. Jinan: Shandong University. (2015).
张皓庭. 激光+GMAW复合热源焊接熔池与小孔动态行为的数值模拟. 济南: 山东大学. (2015).

【22】Kaplan A。 A model of deep penetration laser welding based on calculation of the keyhole profile。 Journal of Physics D: Applied Physics。 27(9), 1805-1814(1994)。

【23】Semak V and Matsunawa A。 The role of recoil pressure in energy balance during laser materials processing。 Journal of Physics D: Applied Physics。 30(18), 2541-2552(1997)。

【24】Cho J H and Na S J. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole. Journal of Physics D: Applied Physics. 39(24), 5372-5378(2006).

【25】von Allmen M and Blatter A. Laser-beam interactions with materials. Berlin, Heidelberg: Springer. 128-131(1995).

【26】Tsao K C and Wu C S。 Fluid flow and heat transfer in GMA weld pools。 Welding Journal。 67(3), 70s-75s(1988)。

引用该论文

Xiangyang Wu,Jianxia Xu,Xuesong Gao,Chuansong Wu. Numerical Simulation of Thermal Process and Fluid Flow Field in Laser-MIG Hybrid Weld Pools[J]. Chinese Journal of Lasers, 2019, 46(9): 0902003

吴向阳,徐剑侠,高学松,武传松. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 0902003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

快赢彩票计划 山东11选5计划 极速赛车是杀大赔小吗 广西快3开奖 山东群英会出号走势图 188彩票计划群 北京两步彩APP 上海11选5 青海快3走势 乐发彩票计划群