首页 > 论文 > Journal of Innovative Optical Health Sciences > 12卷 > 3期(pp:1950013--1)

Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity

Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Two-photon luminescence with near-infrared (NIR) excitation of upconversion nanoparticles (NPs) is of great importance in biological imaging due to deep penetration in high-scattering tissues, low auto-luminescence and good sectioning ability. Unfortunately, common two-photon luminescence is in visible band with an extremely high exciation power density, which limits its application. Here, we synthesized NaYF4:Yb/Tm@NaYF4 upconversion NPs with strong twophoton NIR emission and a low excitation power density. Furthermore, NaYF4:Yb/Tm@NaYF4@SiO2@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for the first time. In addition, it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging. The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm2. Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast. Because of cheaper instruments and safer power density, the NIR two-photon luminescence of NaYF4:Yb/Tm@NaYF4 upconversion NPs could promote wider application of two-photon technology. The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation. Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.

补充资料

DOI:

基金项目:supported by National Key Research and Development Program of China (Grant No. 2018YFC1407503), the Fundamental Research Funds for the Central Universities (2018FZA5001), and The National Natural Science Foundation of China (Grant No. 11621101)

收稿日期:2018-12-16

修改稿日期:2019-03-23

网络出版日期:--

作者单位    点击查看

Wen Liu:State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, P. R. China
Runze Chen:State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, P. R. China
Sailing He:State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, P. R. ChinaSchool of Electrical Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden

联系人作者:Sailing He(sailing@kth.se)

【1】P. N. Prasad, Introduction to Biophotonics, Wiley-Interscience (2004).

【2】Y. F. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G. Heath, Y. Zhang, L. Wu, D. J. Zhou, “Near-infrared fluorescent ribonuclease- A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging," Nanoscale 5, 1009–1017 (2013).

【3】P. F. Rong, P. Huang, Z. G. Liu, J. Lin, A. Jin, Y. Ma, G. Niu, L. Yu, W. B. Zeng, W. Wang, X. Y. Chen, “Protein-based photothermal theranostics for imaging-guided cancer therapy," Nanoscale 7, 16330–16336 (2015).

【4】J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, “High‐order non‐linear optical effects in organic luminogens with aggregation‐induced emission," Adv. Mater. 27, 2332–2339 (2015).

【5】X。 Wu, X。 X。 He, K。 M。 Wang, C。 Xie, B。 Zhou, Z。 H。 Qing, “Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo," Nanoscale 2, 2244–2249 (2010)。

【6】J. V. Frangioni, “In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626–634 (2003).

【7】Q。 Liu, B。 D。 Guo, Z。 Y。 Rao, B。 H。 Zhang, J。 R。 Gong, “Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging," Nano Lett。 13, 2436–2441 (2013)。

【8】N。 J。 Durr, T。 Larson, D。 K。 Smith, B。 A。 Korgel, K。 Sokolov,A。Ben-Yakar,“Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett。 7, 941–945 (2007)。

【9】N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramirez-Hernandez, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Sole, M. Bettinelli, D. Jaque, A. Speghini, “NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ Nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging," Acs. Nano 5, 8665–8671 (2011).

【10】F. Helmchen, W. Denk, “Deep tissue two-photon microscopy," Nat. Meth. 2, 932–940 (2005).

【11】B. G. Wang, K. Konig, K. J. Halbhuber, “Twophoton microscopy of deep intravital tissues and its merits in clinical research," J. Microsc-Oxford 238, 1–20 (2010).

【12】M。 Albota, D。 Beljonne, J。 L。 Bredas, J。 E。 Ehrlich, J。 Y。 Fu, A。 A。 Heikal, S。 E。 Hess, T。 Kogej, M。 D。 Levin, S。 R。 Marder, D。 McCord-Maughon, J。 W。 Perry, H。 Rockel, M。 Rumi, C。 Subramaniam, W。 W。 Webb, X。 L。 Wu, C。 Xu, “Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653–1656 (1998)。

【13】Y. I. Park, K. T. Lee, Y. D. Suh, T. Hyeon, “Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multimodal in vivo imaging," Chem. Soc. Rev. 44, 1302–1317 (2015).

【14】M。 Pollnau, D。 R。 Gamelin, S。 R。 Luthi, H。 U。 Gudel, M。 P。 Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys。 Rev。 B 61, 3337–3346 (2000)。

【15】J.-W. Shen, J. Wang, D. Kong, X.-P. Yan, “Sub-20 nm sandwich-structured NaGdF4:Yb/Tm@NaLuF4:Yb/Tm@NaYF4 nanocrystals for in vivo upconversion luminescence/computed tomography imaging," RSC Adv. 4, 5088 (2014).

【16】Z. Deng, X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng, H. Liu, “A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm," Nanoscale 10, 9393–9400 (2018).

【17】W. You, D. Tu, W. Zheng, X. Shang, X. Song, S. Zhou, Y. Liu, R. Li, X. Chen, “Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications," Nanoscale 10, 11477–11484 (2018).

【18】F。 Wang, X。 Liu, “Upconversion multicolor finetuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles," J。 Am。 Chem。 Soc。 130, 5642–5643 (2008)。

【19】Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, “Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy," Angewandte Chemie 52, 1148–1151 (2013).

【20】A. Zebibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li, J. Qian, “Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging," Adv. Funct. Mater. 28, 1703451 (2018).

【21】F. Wang, R. Deng, X. Liu, “Preparation of coreshell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes," Nat. Protocols 9, 1634–1644 (2014).

【22】X. Ge, L. Dong, L. Sun, Z. Song, R. Wei, L. Shi, H. Chen, “New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging," Nanoscale 7, 7206–7215 (2015).

【23】S。 Wang, W。 Xi, F。 Cai, X。 Zhao, Z。 Xu, J。 Qian, S。 He, “Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging," Theranostics 5, 251–266 (2015)。

【24】W. Liu, Y. Wang, X. Han, P. Lu, L. Zhu, C. Sun, J. Qian, S. He, “Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography," Nanoscale 10, 10025–10032 (2018).

【25】Q。 Li, Z。 Wang, Y。 Chen, G。 Zhang, “Elemental bioimaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys," Metallomics Integr。 Biometal Sci。 9, 1150–1156 (2017)。

【26】C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles," ACS Nano 6, 4788–4795 (2012).

【27】H. Liu, C. T. Xu, D. Lindgren, H. Xie, D. Thomas, C. Gundlach, S. Andersson-Engels, “Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities," Nanoscale 5, 4770–4775 (2013).

【28】J。 Zhou, Z。 Liu, F。 Y。 Li, “Upconversion nanophosphors for small-animal imaging," Chem。 Soc。 Rev。 41, 1323–1349 (2012)。

【29】X. Q. Ge, L. Dong, L. N. Sun, Z. M. Song, R. Y. Wei, L. Y. Shi, H. G. Chen, “New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging," Nanoscale 7, 7206–7215 (2015).

引用该论文

Wen Liu,Runze Chen,Sailing He. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1950013

Wen Liu,Runze Chen,Sailing He. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1950013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

广西快3计划 福建快3计划 广西快3 山东11选5 河南快3走势图 浙江福彩网 大乐购彩票计划群 极速赛车怎么稳赚 上海体彩网 福建快3平台