首页 > 论文 > 光学学报 > 39卷 > 4期(pp:412001--1)

基于线性嵌入和张量流形的高光谱特征提取

Feature Extraction Based on Linear Embedding and Tensor Manifold for Hyperspectral Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了使降维结果更好地体现高光谱数据的空间结构信息, 并进一步提高分类精度, 提出了一种基于线性嵌入和张量流形的高光谱特征提取算法。不同于其他流形结构的表达方法, 所提算法采用协同表示理论求解全局线性嵌入的权重矩阵, 更有利于保持高维数据的全局信息, 提高了流形结构表达的准确性。同时, 建立了基于多特征描述的张量流形降维框架, 得到的显式映射具有较强的可靠性和全局适应性。实验结果表明:与主成分分析、局部线性嵌入、拉普拉斯特征映射和线性保留投影等算法相比, 所提算法表现出了更优越的分类性能。

Abstract

In order to express the spatial structure information of hyperspectral image more effectively and improve the classification accuracy after dimensionality reduction, we propose a hyperspectral feature extraction algorithm based on linear embedding and tensor manifold。 Different from other manifold structure expression methods, the proposed algorithm uses the cooperative representation theory to solve the weight matrix for globally linear embedding, which is more beneficial to maintain the global information of high dimensional data and improve the accuracy of manifold structure expression。 At the same time, the dimension reduction framework of tensor manifold based on multi-feature description is established, and the obtained explicit mapping has strong reliability and global adaptability。 Experimental results show that compared with the principal component analysis, locally linear embedding, Laplacian Eigenmap, linearity preserving projection and other algorithms, the proposed algorithm has better classification performance。

补充资料

中图分类号:TP751。1

DOI:

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(41574008,61501465)

收稿日期:2018-09-07

修改稿日期:2018-10-30

网络出版日期:--

作者单位    点击查看

马世欣:火箭军工程大学导弹工程学院, 陕西 西安 710025
刘春桐:火箭军工程大学导弹工程学院, 陕西 西安 710025
李洪才:火箭军工程大学导弹工程学院, 陕西 西安 710025
张耿:中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119
何祯鑫:火箭军工程大学导弹工程学院, 陕西 西安 710025

联系人作者:马世欣(mashixin0106@sina.com)

【1】Ghamisi P, Yokoya N, Li J, et al。 Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art[J]。 Proceedings of the IEEE, 2017, 5(4): 37-78。

【2】Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. Proceedings of the IEEE, 2013, 1(2): 6-36.

【3】Li W, Feng F B, Li H C, et al. Discriminant analysis-based dimension reduction for hyperspectral image classification: a survey of the most recent advances and an experimental comparison of different techniques[J]. Proceedings of the IEEE, 2018, 6(1): 15-34.

【4】Sun W W, Yang G, Du B, et al. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification[J]. Proceedings of the IEEE, 2017, 55(7): 4032-4046.

【5】Dong A G, Li J X, Zhang B, et al. Hyperspectral image classification algorithm based on spectral clustering and sparse representation[J]. Acta Optica Sinica, 2017, 37(8): 0828005.
董安国, 李佳逊, 张蓓, 等. 基于谱聚类和稀疏表示的高光谱图像分类算法[J]. 光学学报, 2017, 37(8): 0828005.

【6】Zhang W Q, Li X R, Dou Y X, et al。 A geometry-based band selection approach for hyperspectral image analysis[J]。 Proceedings of the IEEE, 2018, 56(8): 4318-4333。

【7】Wang M D, Yu J, Niu L J, et al. Feature extraction for hyperspectral images using low-rank representation with neighborhood preserving regularization[J]. Proceedings of the IEEE, 2017, 14(6): 836-840.

【8】Wei F, He M Y, Feng Y, et al. Feature extraction on matrix factorization for hyperspectral data[J]. Journal of Infrared and Millimeter Waves, 2014, 33(6): 674-679.
魏峰, 何明一, 冯燕, 等. 基于矩阵分解的高光谱数据特征提取[J]. 红外与毫米波学报, 2014, 33(6): 674-679.

【9】Licciardi G, Marpu P R, Chanussot J, et al. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. Proceedings of the IEEE, 2012, 9(3): 447-451.

【10】Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. Proceedings of the IEEE, 1988, 26(1): 65-74.

【11】Crawford M, Held A A, Burger J. Nonlinear manifolds for feature extraction: opportunities and challenge[J]. Proceedings of the IEEE, 2011: 1-3.

【12】Lunga D, Prasad S, Crawford M M, et al. Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning[J]. Proceedings of the IEEE, 2014, 31(1): 55-66.

【13】Ma L, Crawford M M, Yang X Q, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification[J]. Proceedings of the IEEE, 2015, 53(5): 2832-2844.

【14】Zhai Y G, Zhang L F, Wang N, et al. A modified locality-preserving projection approach for hyperspectral image classification[J]. Proceedings of the IEEE, 2016, 13(8): 1059-1063.

【15】Chen X Z, Hu H J, Wang X S. Dimensionality reduction for hyperspectral data using weighted neighborhood preserving embedding[J]. Journal of China University of Mining & Technology, 2013, 42(6): 1066-1072.
陈新忠, 胡汇涓, 王雪松. 基于加权近邻保持嵌入的高光谱数据降维方法[J]. 中国矿业大学学报, 2013, 42(6): 1066-1072.

【16】He X F, Niyogi P. Locality preserving projection[C]. Advances in Neural Information Processing System, 2004(16): 153-160.

【17】Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.

【18】Chen Z, Wang B, Zhang L M. Dimensionality reduction and classification based on lower rank tensor analysis for hyperspectral imagery[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 569-575.
陈昭, 王斌, 张立明. 基于低秩张量分析的高光谱图像降维与分类[J]. 红外与毫米波学报, 2013, 32(6): 569-575.

【19】An J L, Zhang X R, Zhou H Y, et al. Tensor-based low-rank graph with multimanifold regularization for dimensionality reduction of hyperspectral images[J]. Proceedings of the IEEE, 2018, 56(8): 4731-4746.

【20】Li W, Du Q. Collaborative representation for hyperspectral anomaly detection[J]. Proceedings of the IEEE, 2015, 53(3): 1463-1474.

【21】Sidiropoulos N D, de Lathauwer L, Fu X, et al。 Tensor decomposition for signal processing and machine learning[J]。 Proceedings of the IEEE, 2017, 65(13): 3551-3582。

【22】Deng Y J, Li H C, Fu K, et al. Tensor low-rank discriminant embedding for hyperspectral image dimensionality reduction[J]. Proceedings of the IEEE, 2018, 56(12): 7183-7194.

【23】Makantasis K, Doulamis A D, Doulamis N D, et al. Tensor-based classification models for hyperspectral data analysis[J]. Proceedings of the IEEE, 2018, 56(12): 6884-6898.

【24】Zhang T H, Tao D C, Li X L, et al. Patch alignment for dimensionality reduction[J]. Proceedings of the IEEE, 2009, 21(9): 1299-1313.

引用该论文

Ma Shixin,Liu Chuntong,Li Hongcai,Zhang Geng,He Zhenxin。 Feature Extraction Based on Linear Embedding and Tensor Manifold for Hyperspectral Image[J]。 Acta Optica Sinica, 2019, 39(4): 0412001

马世欣,刘春桐,李洪才,张耿,何祯鑫. 基于线性嵌入和张量流形的高光谱特征提取[J]. 光学学报, 2019, 39(4): 0412001

被引情况

【1】高升,王巧华,付丹丹,李庆旭. 红提糖度和硬度的高光谱成像无损检测. 光学学报, 2019, 39(10): 1030004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

极速赛车大小怎么看 极速赛车登陆 GT彩票计划群 吉林快3计划 环球一号彩票计划群 金福彩票计划群 福建11选5走势 极速赛车直播网站 极速赛车开奖结果直播 爱投彩票计划群