首页 > 论文 > 中国激光 > 45卷 > 8期(pp:811001--1)

基于偏振分辨LIBS技术的土壤重金属检测研究

Detection of Heavy Metals in Soil Based on Polarization Resovled LIBS Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高土壤重金属激光诱导击穿光谱(LIBS)特征谱线的信背比(SBR)和稳定性,并降低元素检测限,研究了土壤LIBS连续背景辐射以及Fe、Pb、Ca、Mg等4种元素特征分立谱线的偏振特性,对比分析了有、无偏振条件下元素特征谱线的相对标准偏差(RSD)、SBR与检测限。结果表明:4种元素的特征谱线Fe Ⅰ:404.581 nm、Pb Ⅰ:405.780 nm、Ca Ⅰ:422.670 nm和Mg Ⅰ:518.361 nm及其相应连续背景辐射的偏振度分别为0.27、0.17、0.25、0.23和0.70、0.64、0.69、0.67。偏振分辨LIBS(PRLIBS)技术使得4条特征谱线Fe Ⅰ:404.581 nm、Pb Ⅰ:405.780 nm、Ca Ⅰ:422.670 nm和Mg Ⅰ:518.361 nm的RSD分别降低了3.28%、2.2%、3.24%和1.34%。PRLIBS技术有效抑制了连续背景辐射,4种元素特征谱线的SBR分别提高了5.59、5.67、5.30、7.35倍。在有、无偏振条件下,Pb元素的检测限分别为17.4×10-6和39.4×10-6,偏振条件下的检测限为无偏振条件下的44%。以上研究结果为进一步提升土壤重金属的LIBS定量分析能力提供了数据支撑。

Abstract

In order to decrease the limit of detection of elements and improve signal-to-background ratio (SBR) and the stability of characteristic spectral lines of laser-induced breakdown spectroscopy (LIBS) of heavy metals in soil, we study the polarization property of four characteristic discrete spectral lines of Fe, Pb, Ca, Mg elements and continuous background radiation of LIBS in soil, and analyze the limit of detection, SBR and relative standard deviation (RSD) of characteristic spectral lines of elements under the conditions of polarization and no-polarization。 The results indicate that the polarization degree of four characteristic spectral lines Fe Ⅰ: 404。581 nm, Pb Ⅰ: 405。780 nm, Ca Ⅰ: 422。670 nm, Mg Ⅰ: 518。361 nm and corresponding continuous background radiation are 0。27, 0。17, 0。25, 0。23 and 0。70, 0。64, 0。69, 0。67, respectively。 The polarization resolved LIBS (PRLIBS) technology makes RSD of four characteristic spectral lines Fe Ⅰ: 404。581 nm, Pb Ⅰ: 405。780 nm, Ca Ⅰ: 422。670 nm, Mg Ⅰ: 518。361 nm decrease by 3。28%, 2。2%, 3。24% and 1。34%, respectively。 Continuous background radiation is effectively depressed by PRLIBS technology, and SBR of four characteristic spectral lines is increased by 5。59, 5。67, 5。30, 7。35 times, respectively。 Under the conditions of polarization and no-polarization, the limits of detection of heavy metal Pb are 17。4×10-6 and 39。4×10-6, respectively, limit of detection under polarization is 44% that of non-polarization。 Above results provide data support for further improving quantitative analysis ability of LIBS on heavy metal in soil。

补充资料

中图分类号:O433.4

DOI:

所属栏目:光谱学

基金项目:湖北省知识创新专项(2018CFC862)、国家863计划(2014AA06A513,2013AA065502)、国家自然科学基金(61378041)、安徽省科技重大专项(16030801117)、安徽省科技攻关项目(1501041119)

收稿日期:2018-01-31

修改稿日期:2018-03-18

网络出版日期:2018-03-23

作者单位    点击查看

余洋:黄冈师范学院电子信息学院, 湖北 黄冈 438000
赵南京:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
孟德硕:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
马明俊:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
兰智高:黄冈师范学院电子信息学院, 湖北 黄冈 438000

联系人作者:赵南京(njzhao@aiofm.ac.cn); 余洋(yuyang@hgnu.edu.cn);

【1】Gu Y H, Zhao N J, Ma M J, et al. Rapid measurement of particle ratio in soil by laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2015, 42(11): 1115002.
谷艳红, 赵南京, 马明俊, 等. 基于元素粒子比的土壤重金属元素快速分析方法研究[J].中国激光, 2015, 42(11): 1115002.

【2】Yi R X, Guo L B, Zou X H, et al. Background removal in soil analysis using laser-induced breakdown spectroscopy combined with standard addition method[J]. Optics Express, 2016, 24(3): 2607-2618.

【3】Fu X, Duan F J, Huang T T, et al. A fast variable selection method for quantitative analysis of soils using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(6): 1166-1176.

【4】Hu L, Zhao N J, Liu W Q, et al. Quantitative analysis of Pb in water based on multivariate calibration with LIBS[J]. Acta Optica Sinica, 2015, 35(6): 0630001.
胡丽, 赵南京, 刘文清, 等. 基于多元校正的水体Pb元素LIBS定量分析[J]. 光学学报, 2015, 35(6): 0630001.

【5】Zhu G Z, Guo L B, Hao Z Q, et al. Detection of metal element in water using laser-induced breakdown spectroscopy assisted by nebulizer[J]. Acta Physica Sinica, 2015, 64(2): 024212.
朱光正, 郭连波, 郝中骐, 等. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素[J]. 物理学报, 2015, 64(2): 024212.

【6】Díaz Pace D M, Miguel R E, Di Rocco H O, et al。 Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy[J]。 Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 131: 58-65。

【7】Gottlieb C, Millar S, Günther T, et al。 Revealing hidden spectral information of chlorine and sulfer in data of a mobile laser-induced breakdown spectroscopy system using chemometrics[J]。 Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 132: 43-49。

【8】Xin Y, Sun L X, Yang Z J, et al. In-situ analysis of solid steel samples with remote double-pulse laser-induced breakdown spectroscopy system[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2255-2259.
辛勇, 孙兰香, 杨志家, 等. 基于一种远程双脉冲激光诱导击穿光谱系统原位分析钢样成分[J]. 光谱学与光谱分析, 2016, 36(7): 2255-2259.

【9】Zhou W D, Li K X, Shen Q M, et al。 Optical emission enhancement using laser ablation combined with fast pulse discharge[J]。 Optics Express, 2010, 18(3): 2573-2578。

【10】Wang Z, Feng J, Li L Z, et al。 A non-linearized PLS model based on multivariate dominant factor for laser induced breakdown spectroscopy measurements[J]。 Journal of Analytical Atomic Spectrometry, 2011, 26(11): 2175-2182。

【11】Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111002.
王金梅, 颜海英, 郑培超, 等. 基于激光诱导击穿光谱定量检测土壤中营养元素的研究[J].中国激光, 2017, 44(11): 1111002.

【12】Yang W B, Li B C, Han Y L, et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(10): 1011001.
杨文斌, 李斌成, 韩艳玲, 等. 激光诱导击穿光谱技术定量分析氩气和氮气中的痕量氧含量[J]. 中国激光, 2017, 44(10): 1011001.

【13】Zhu Y S, Li Y, Lu Y, et al. Study on identification method based on vector space model for geological cuttings using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2891-2895.
朱元硕, 李颖, 卢渊, 等. 基于向量空间模型的岩屑LIBS光谱分类识别方法[J]. 光谱学与光谱分析, 2017, 37(9): 2891-2895.

【14】Yang H, Huang L, Liu M H, et al. Detection of cadmium in navel orange by laser induced breakdown spectroscopy combined with moving window partial least square[J]. Laser & Optoelectronics Progress, 2017, 54(8): 083002.
杨晖, 黄林, 刘木华, 等. 激光诱导击穿光谱结合移动窗口偏最小二乘对脐橙中重金属Cd的检测[J]. 激光与光电子学进展, 2017, 54(8): 083002.

【15】Liu Y M, Singha S, Witt T E, et al. Observation of near total polarization in the ultrafast laser ablation of Si[J]. Applied Physics Letters, 2008, 93(16): 161502.

【16】Penczak J S, Liu Y M, Gordon R J。 Polarization resolved laser-induced breakdown spectroscopy of Al[J]。 Journal of Physical Chemistry A, 2009, 113: 13310-13317。

【17】Zhao Y B, Singha S, Liu Y M, et al. Polarization resolved laser-induced breakdown spectroscopy[J]. Optics Letters, 2009, 34(4): 494-496.

【18】Liu Y M, Penczak J S, Gordon R J. Nanosecond polarization resolved laser-induced breakdown spectroscopy[J]. Optics Letters, 2010, 35(2): 112-114.

【19】Liu J, Tao H Y, Gao X, et al。 The polarization characteristics of single shot nanosecond laser-induced breakdown spectroscopy of Al[J]。 Chinese Physics B, 2013, 22(4): 044206。

引用该论文

Yu Yang,Zhao Nanjing,Meng Deshuo,Ma Mingjun,Lan Zhigao。 Detection of Heavy Metals in Soil Based on Polarization Resovled LIBS Technique[J]。 Chinese Journal of Lasers, 2018, 45(8): 0811001

余洋,赵南京,孟德硕,马明俊,兰智高. 基于偏振分辨LIBS技术的土壤重金属检测研究[J]. 中国激光, 2018, 45(8): 0811001

被引情况

【1】贾军伟,付洪波,王华东,周琪琪,倪志波,董凤忠. 光束整形对激光诱导击穿光谱稳定性的改善. 中国激光, 2019, 46(3): 311004--1

【2】李乘,姚关心,杨新艳,秦正波,郑贤锋,崔执凤. 液相基质激光诱导击穿光谱的关键实验参数优化. 激光与光电子学进展, 2019, 56(7): 73002--1

【3】王腾军,赵明海,杨 耘,张 扬,崔琴芳,李陇同. 多光谱影像的陕西大西沟矿区土壤重金属含量反演. 光谱学与光谱分析, 2019, 39(12): 3880-3887

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

极速赛车每天稳赚技巧 创元彩票计划群 上海11选5开奖 上海11选5走势图 188彩票计划群 广发彩票计划群 山东群英会直播 安徽快3走势 金冠彩票计划群 上海11选5走势