首页 > 论文 > Matter and Radiation at Extremes > 2卷 > 5期(pp:243-255)

Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

The SG-Ⅲ laser facility (SG-Ⅲ) is the largest laser driver for inertial confinement fusion (ICF) researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

Abstract

The SG-Ⅲ laser facility (SG-Ⅲ) is the largest laser driver for inertial confinement fusion (ICF) researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

补充资料

DOI:

所属栏目:Review Article

基金项目:This work is supported by the SG-Ⅲ performance upgrade project。

收稿日期:2017-05-21

修改稿日期:2017-07-12

网络出版日期:--

作者单位    点击查看

Wanguo Zheng:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, ChinaIFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
Xiaofeng Wei:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Qihua Zhu:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, ChinaIFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
Feng Jing:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Dongxia Hu:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, ChinaIFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
Xiaodong Yuan:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Wanjun Dai:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Wei Zhou:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Fang Wang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Dangpeng Xu:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Xudong Xie:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Bin Feng:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Zhitao Peng:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Liangfu Guo:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Yuanbin Chen:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Xiongjun Zhang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Lanqin Liu:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Donghui Lin:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Zhao Dang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Yong Xiang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Rui Zhang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Fang Wang:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Huaiting Jia:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
Xuewei Deng:Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, ChinaIFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China

联系人作者:Xuewei Deng(xwdeng@caep.cn)

【1】M. Dunne, Laser Inertial Fusion Energy (LIFE) e a path to US energy independence, in: Annual Meeting of the Southern States Energy Board, 2012.

【2】J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2) (2004) 339-491.

【3】M.D. Rosen, J.D. Lindl, J.D. Kilkenny, Recent results on Nova, J. Fusion Energy 13 (2e3) (1994) 155-166.

【4】T.R. Boehly, R.S. Craxton, T.H. Hinterman, J.H. Kelly, T.J. Kessler, et al., The upgrade to the OMEGA laser system, Rev. Sci. Instrum. 88 (l) (1995) 506e510.

【5】C。A。 Haynam, P。J。 Wegner, J。M。 Auerbach, M。W。 Bowers, S。N。 Dixit, et al。, National Ignition Facility laser performance status, Appl。 Opt。 46 (16) (2007) 3276e3303。

【6】National Ignition Campaign Execution Plan, UCRL-AR-213718, NIF- 0111975-AA, Rev. 0, June 2005.

【7】National Ignition Campaign Program Completion Report, LLNL-TR- 637982, September 30, 2012。

【8】J. Ebradt, J.M. Chaput, LMJ on its way to fusion, J. Phys. Conf. Ser. 244 (2010) 032017.

【9】X.T. He, W.Y. Zhang, C.F. Ye, Inertial fusion energy research progress in China, in: 6th Symposium on Current Trends in International Fusion Research: A Review, Washington, D.C., USA, 7e11 March 2005.

【10】Z.Q. Lin, X.M. Deng, D.Y. Fan, S.J. Wang, S.H. Chen, et al., SG-Ⅱ laser elementary research and precision SG-Ⅱ program, Fusion Eng. Des. 44 (1999) 61e66.

【11】P. Li, F. Jing, D.S. Wu, R.C. Zhao, H. Li, et al., Power balance on the SG-Ⅲ prototype facility, Proc. SPIE 8433 (2012) 843317.

【12】W.G. Zheng, X.F.Wei, Q.H. Zhu, F. Jing, D. Hu, et al., Laser performance of the SG-Ⅲ laser facility, High Power Laser Sci. Eng. 4 (2016) e21.

【13】J.D. Moody, B.J. MacGowan, J.E. Rothenberg, R.L. Berger, L. Divol, et al., Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma, Phys. Rev. Lett. 86 (13) (2001) 2810-2813.

【14】G.A. Kyrala, A. Seifter, J.L. Kline, S.R. Goldman, S.H. Batha, et al., Tuning indirect-drive implosions using cone power balance, Phys. Plasmas 18 (7) (2011) 072703.

【15】C.K. Li, F.H. Seguin, J.A. Frenje, S.R. Goldman, S.H. Batha, et al., Effects of nonuniform illumination on implosion asymmetry in directdrive inertial confinement fusion, Phys. Rev. Lett. 92 (20) (2004) 205001.

【16】J. Fuchs, C. Labaune, S. Depierreux, H.A. Baldis, A. Michard, et al., Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing, Phys. Rev. Lett. 84 (14) (2000) 3089-3092.

【17】R.M. Malone, J.R. Bower, D.K. Bradley, T.W. Tunnell, Imaging VISAR diagnostic for the National Ignition Facility (NIF), in: SPIE High-speed Photography and Photonics Conference Alexandria, VA, United States, UCRL-CONF-206587, 2004.

【18】R. Zhang, M.Z. Li, J.J. Wang, W. Duan, F. Wang, et al., Experimental research on an arbitrary pulse generation system for imaging VISAR, Opt. Laser Technol. 43 (2011) 179-182.

【19】S.H. Glenzer, B.J. Macgowan, P. Michel, N.B. Meezan, L.J. Suter, et al., Symmetric inertial confinement fusion implosions at ultra-high laser energies, Science 327 (5970) (2010) 1228-1231.

【20】J。 Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys。 Plasmas 2 (1995) 3933。

【21】M。L。 Spaeth, K。R。 Manes, M。 Bowers, P。 Celliers, J。M。D。 Nicola, et al。, National Ignition Facility laser system performance, Fusion Sci。 Technol。 69 (2016) 366-394。

【22】D。X。 Hu, J。 Dong, D。P。 Xu, X。 Huang, W。 Zhou, et al。, Generation and measurement of complex laser pulse shapes in the SG-Ⅲ laser facility, Chin。 Opt。 Lett。 13 (4) (2015) 041406。

【23】J。 N eauport, X。 Ribeyre, J。 Daurios, D。 Valla, M。 Lavergne, et al。, Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities, Appl。 Opt。 42 (23) (2003) 77-82。

【24】S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (34) (1989) 56-62.

【25】J。E。 Rothenberg, Polarization beam smoothing for inertial confinement fusion, J。 Appl。 Phys。 87 (2000) 3654-3662。

【26】J.R. Murray, J. Ray Smith, R.B. Ehrlich, D.T. Kyrazis, C.E. Thompson, et al., Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components, J. Opt. Soc. Am. B 6 (12) (1989) 2402-2411.

【27】S.P. Regan, J.A. Marozas, R.S. Craxton, J.H. Kelly, W.R. Donaldson, et al., Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams, J. Opt. Soc. Am. B 22 (5) (2005) 998-1002.

【28】T。R。 Boehly, V。A。 Smalyuk, D。D。 Meyerhofer, J。P。 Knauer, D。K。 Bradley, et al。, Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser, J。 Appl。 Phys。 85 (1999) 3444-3662。

【29】S.N. Dixit, D. Munro, J.R. Murray, M. Nostrand, P.J. Wegner, et al., Polarization Smoothing on the National Ignition Facility, UCRL-PROC- 215251, Inertial Fusion Science and Applications, 2005.

【30】X.X. Huang, H.T. Jia, W. Zhou, F. Zhang, H. Guo, et al., Experimental demonstration of polarization smoothing in a convergent beam, Appl. Opt. 54 (33) (2015) 9786-9790.

引用该论文

Wanguo Zheng,Xiaofeng Wei,Qihua Zhu,Feng Jing,Dongxia Hu,Xiaodong Yuan,Wanjun Dai,Wei Zhou,Fang Wang,Dangpeng Xu,Xudong Xie,Bin Feng,Zhitao Peng,Liangfu Guo,Yuanbin Chen,Xiongjun Zhang,Lanqin Liu,Donghui Lin,Zhao Dang,Yong Xiang,Rui Zhang,Fang Wang,Huaiting Jia,Xuewei Deng。 Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]。 Matter and Radiation at Extremes, 2017, 2(5): 243-255

Wanguo Zheng,Xiaofeng Wei,Qihua Zhu,Feng Jing,Dongxia Hu,Xiaodong Yuan,Wanjun Dai,Wei Zhou,Fang Wang,Dangpeng Xu,Xudong Xie,Bin Feng,Zhitao Peng,Liangfu Guo,Yuanbin Chen,Xiongjun Zhang,Lanqin Liu,Donghui Lin,Zhao Dang,Yong Xiang,Rui Zhang,Fang Wang,Huaiting Jia,Xuewei Deng. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

全民彩票计划群 赢天下彩票计划群 极速赛车每天稳赚技巧 北京两步彩 亿宝娱乐彩票计划群 吉林快3 优优彩票网 山东11选5计划 上海11选5走势 上海11选5计划