首页 > 论文 > 半导体光电 > 38卷 > 3期(pp:419-424)

一种融合聚类的监督局部线性嵌入算法研究

Study on Supervised Local Linear Embedding Algorithm Based on Fusion Clustering

王东   张强   严亮  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射, 针对SLLE在均匀化高维数据的分布和最小化重构代价时, 忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形, 引入Kmeans++算法调整样本间距离, 进行最优近邻点的选择, 从而更有效地反映数据在高维空间中的实际分布, 使降维后的数据具备更好的可分性。通过ORL以及Yale人脸数据集上的仿真实验, 结果显示, 该方法具有更强的泛化能力及更高的识别率。

Abstract

The supervised local linear embedding algorithm (SLLE) maps the high dimensional data in the low dimensional feature space through the label information of the data points. In the process of homogenizing the high dimensional data distribution and minimizing the reconstruction cost and for the situation that the sparse discrete data ignored in-class deviations from the population distribution may be incorrectly projected in other hyperplanes during the linear reconstruction, the Kmeans ++ algorithm is introduced to adjust the distance between the samples, and the selection of the optimal neighbor points making the data more efficiently reflect the actual distribution in the high-dimensional space, so that the reduced dimension of the data has better separability. Through the simulation of ORL and Yale data set, the proposed method has stronger generalization ability and higher recognition rate.

补充资料

中图分类号:TP274

DOI:

所属栏目:光电技术应用

基金项目:重庆市教育委员会科学技术研究项目(KJ1400907, KJ1400911, CY160904)。

收稿日期:2016-12-12

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王东:重庆理工大学 计算机科学与工程系, 重庆 400054
张强:重庆理工大学 计算机科学与工程系, 重庆 400054
严亮:重庆理工大学 计算机科学与工程系, 重庆 400054

联系人作者:王东(451553616@qq.com)

备注:王东(1969-), 男, 博士, 副教授, 研究生导师, 主要从事物联网及嵌入式相关应用的开发及算法研究。

【1】黄晓辉.高维数据的若干聚类问题及算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
Huang Xiaohui. The study of clustering problem and algorithm of high dimensional data[D]. Harbin: Harbin Institute of Technology, 2015.

【2】王卫卫, 李小平, 冯象初, 等. 稀疏子空间聚类综述[J]. 自动化学报, 2015, 41(8): 1373-1384.
Wang W W, Li X P, Feng X C, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384.

【3】Gumus E, Kilic N, Sertbas A, et al。 Evaluation of face recognition techniques using PCA, wavelets and SVM[J]。 Expert Systems with Appl。, 2010, 37(9): 6404-6408。

【4】Zhou C, Wang L, Zhang Q, et al. Face recognition based on PCA image reconstruction and LDA[J]. Optik-Inter. J. for Light and Electron. Opt., 2013, 124(22): 5599-5603.

【5】Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.

【6】Wu F C, Hu Z Y。 The LLE and a linear mapping[J]。 Pattern Recognition, 2006, 39(9): 1799-1804。

【7】Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.

【8】De Ridder D, Kouropteva O, Okun O, et al。 Supervised locally linear embedding[C]// Proc。 of Joint Inter。 Conf。 on Artificial Neural Networks and Neural Information, 2003: 333-341。

【9】李白燕, 李 平, 陈庆虎. 基于改进的监督LLE人脸识别算法[J]. 电视技术, 2011, 35(19): 105-108.
Li Baiyan, Li Ping, Chen Qinghu. Face recognition algorithm based on improved supervised LLE[J]. Video Engin., 2011, 35(19): 105-108.

【10】薄翠梅, 韩晓春, 易 辉, 等. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3): 925-930.
Bo Cuimei, Han Xiaochun, Yi Hui, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. J. of Chem. Engin., 2016, 67(3): 925-930.

【11】夏士雄, 李佑文, 周 勇, 等. 一种半监督局部线性嵌入算法的文本分类方法[J]. 计算机应用研究, 2010, 27(1): 64-67.
Xia Shixiong, Li Youwen, Zhou Yong, et al. Method based on semi-supervised local linear embedding algorithm for text classification[J]. Appl. Research of Computers, 2010, 27(1): 64-67.

【12】庞彦伟, 俞能海, 沈道义, 等. 基于核邻域保持投影的人脸识别[J]. 电子学报, 2006, 34(8): 1542-1544.
Pang Yanwei, Yu Nenghai, Shen Daoyi, et al. Kernel neighborhood preserving projections for face recognition[J]. Acta Electron. Sinica, 2006, 34(8): 1542-1544.

【13】苏锦旗, 张文宇. 基于模糊聚类的改进LLE算法[J]. 计算机与现代化, 2014(5): 10-13.
Su Jinqi, Zhang Wenyu. An improved LLE dimensionality reduction algorithm based on FCM[J]. Computer and Modernization, 2014(5): 10-13.

【14】狄 晨, 王伟智. 基于改进距离的LLE算法在人脸识别中的应用[J]. 福建电脑, 2009, 25(11): 157-158.
Di Chen, Wang Weizhi. The application in face recognition based on improved distance of the LLE algorithm[J]. Fujian Computer, 2009, 25(11): 157-158.

【15】许晓丽. 基于聚类分析的图像分割算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
Xu Xiaoli.The research of the segmentation algorithm based on clustering analysis[D]. Harbin: Harbin Engineering University, 2012.

【16】赵小强, 谢亚萍. 基于局部线性嵌入的半监督仿射传播聚类算法[J]. 兰州理工大学学报, 2015, 41(1): 96-100.
Zhao Xiaoqiang, Xie Yaping. Semi-supervised affinity propagation clustering algorithm based on local linear embedding[J]. J. of Lanzhou University of Technol., 2015, 41(1): 96-100.

【17】侯小丽. 高维数据聚类中的神经网络降维方法研究[D]. 兰州: 兰州大学, 2015.
Hou Xiaoli. The research of neural network reduction method in high dimensional data clustering[D]. Lanzhou: Lanzhou University, 2015.

【18】文贵华, 包 丽, 丁月华. 局部线性嵌入算法中参数的选取[J]. 计算机应用研究, 2007, 24(2): 60-62.
Wen Guihua, Bao Li, Ding Yuehua. Determining parameter for locally linear embedding algorithm[J]. Appl. Research of Computers, 2007, 24(2): 60-62.

引用该论文

WANG Dong,ZHANG Qiang,YAN Liang。 Study on Supervised Local Linear Embedding Algorithm Based on Fusion Clustering[J]。 Semiconductor Optoelectronics, 2017, 38(3): 419-424

王东,张强,严亮. 一种融合聚类的监督局部线性嵌入算法研究[J]. 半导体光电, 2017, 38(3): 419-424

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

快3在线投注 上海11选5 山东群英会app下载 湖北快3 汇丰彩票官网 广发彩票计划群 大运彩票计划群 极速赛车怎么赢到钱 迅雷彩票计划群 网投极速赛车公式技巧