首页 > 论文 > 强激光与粒子束 > 28卷 > 12期(pp:124101--1)

3D打印技术应用于加工微靶零件

3D printing technology for the fabrication of micro target components

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用三种商业3D打印机尝试加工了金属材质和树脂材质的微型靶零件。通过EOSINT M290 3D打印机以激光烧结的方式加工了钛金属靶架;通过Object 30 Pro 3D打印机以聚丙烯树脂为材料,通过喷射打印的方式加工了构型复杂的树脂靶架;通过Freeform Pico 3D打印机以蜡质树脂为材料,通过光固化成型的加工方式,获得了微腔、圆柱和平面元件,并在其表面设计了周期性图形结构。采用光学工具显微镜和共聚焦显微镜对样品的尺寸和表面形貌进行了表征。结果表明:金属靶架的线粗糙度为7.3~17.79 μm,抛光之后降低为0.87~1.66 μm;树脂靶架的面均方根粗糙度为2.88 μm;微腔和圆柱元件端面的面均方根粗糙度为2.03 μm,表面的条纹周期与设计值偏差为1.40%,平均振幅值偏差为55.50%;平面元件的面均方根粗糙度为4.87 μm,表面调制图形的周期与设计值偏差为0.80%,平均振幅偏差为3.60%。通过商业3D打印机加工靶零件,为惯性约束聚变实验中微靶零件的加工提供了新思路。

Abstract

Three commercial 3-dimension printers were used to fabricate micro target components with metal and resin materials. A titanium metal target frame was fabricated by EOSINT M290 3D printer by the means of Laser Sintering. Resin target frames, microcavity and cylinder were fabricated by Object 30 Pro 3D printer through Polyjet means using polypropylene resin as printing material. The surface of microcavity, cylinder and slice designed with periodic pattern were fabricated by Freeform Pico 3D printer through the means of stereo lithography apparatus applying wax resin as printing material. The size and surface morphology of samples were characterized by optical microscope and laser scanning confocal microscope. The results show that the line roughness of titanium metal target frame is 7.3-17.79 μm and it decreased to 0.87-1.66 μm after polishing. The root mean square roughness (RMS) of resin frame is 2.88 μm. The RMS of the end surface of microcavity and cylinder is 2.03 μm; the deviation between measured value and designed value of streak pattern period on the microcavity and cylinder side is 1.40% and that of amplitude is 55.50%. The RMS of slice component is 4.87 μm, the deviation of modulation pattern period is 0.80% and that of the amplitude is 3.60%. Application of commercial 3D printer to fabricate micro target components, with high efficiency and low cost provides a new approach for the manufacturing of target components used in inertial confinement fusion experiment.

补充资料

中图分类号:TB472

DOI:

所属栏目:微纳技术

基金项目:国家高技术研究发展计划项目;上海航天科技创新基金项目(SAST201469)

收稿日期:2016-05-11

修改稿日期:2016-09-28

网络出版日期:--

作者单位    点击查看

向友来:同济大学 物理科学与工程学院, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
杜艾:同济大学 物理科学与工程学院, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
谢志勇:上海激光等离子体研究所, 上海 201800
叶君健:上海激光等离子体研究所, 上海 201800
张志华:同济大学 物理科学与工程学院, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
周斌:同济大学 物理科学与工程学院, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092

联系人作者:向友来(xyltongji@163.com)

备注:向友来(1992-),男,硕士研究生,凝聚态物理专业;

【1】唐永建, 张林, 吴卫东, 等. ICF靶材料和靶制备技术研究进展[J]. 强激光与粒子束, 2008, 20(11):1773-1786. (Tang Yongjian, Zhang lin, Wu Weidong, et al. Research progress on ICF target materials and target fabrication technology. High Power Laser and Particle Beams, 2008, 20(11):1773-1786)

【2】谢军, 黄燕华, 吴卫东, 等. 单点金刚石切削技术在ICF靶制备中的应用[J]. 原子能科学技术, 2005, 39(3): 274-277. (Xie Jun, Huang Yanhua, Wu Weidong, et al. Application of single point diamond turning technology in field of ICF target fabrication. Atomic Energy Science and Technology, 2005, 39(3): 274-277)

【3】Schultz K R, Kaae J L, Miller W J, et al. Status of inertial fusion target fabrication in the USA[J]. Fusion Engineering and Design, 1999, 44(1): 441-448.

【4】Lee J W, Ahn G S, Kim D S, et al. Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography[J]. Microelectronic Engineering, 2009, 86(4): 1465-1467.

【5】Berman B. 3-D printing: The new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162.

【6】Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352.

【7】兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学: 技术科学, 2015, 45(9): 919-940. (Lan Hongbo, Li Dichen,Lu Bingheng. Micro-and nanoscale 3D printing. Science China Technological Sciences, 2015, 45(9): 919-940)

【8】陈小文, 李建雄, 刘安华. 快速成型技术及光固化树脂研究进展[J]. 激光杂志, 2011, 32(3): 1-3. (Chen Xiaowen, Li Jianxiong, Liu Anhua. Research progress of rapid prototyping and photocurable resin. Laser Journal, 2011, 32(3): 1-3)

【9】贺超良, 汤朝晖, 田华雨, 等. 3D 打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013, 52(6): 722-732. (He Chaoliang, Tang Chaohui, Tian Huayu, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology. Acta Polymerica Sinica, 2013, 52(6): 722-732)

【10】李鹏, 熊惟皓. 选择性激光烧结的原理及应用[J]. 材料导报, 2002, 16(6): 55-58. (Li Peng, Xiong Weihao. Principles and applcations of selective laser sintering. Materials Review, 2002, 16(6): 55-58)

【11】Wong K V, Hernandez A。 A review of additive manufacturing[J]。 ISRN Mechanical Engineering, 2012, 2012: 208760。

【12】Sakellari I, Gaidukeviciute A, Giakoumaki A, et al. Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication[J]. Applied Physics A, 2010, 100(2): 359-364.

【13】Frazier W E。 Metal additive manufacturing: a review[J]。 Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928。

【14】何岷洪, 宋坤, 莫宏斌, 等。 3D 打印光敏树脂的研究进展[J]。 功能高分子学报, 2015, 28(1): 102-108。 (He Minhong, Song Kun, Mo Hongbin, et al。 Progress on photosensitive resins for 3D printing。 Journal of Functional Polymers, 2015, 28(1): 102-108)

【15】宋晓艳, 邢金峰. 双光子聚合 3D 打印[J]. 化工学报, 2015, 66(9): 3324-3332. (Song Xiaoyan, Xing Jinfeng. 3D printing technology based on two-photon polymerization. Journal of Chemical Industry and Engineering, 2015, 66(9): 3324-3332)

【16】Mcdougal R A, Shepherd G M. 3D-printer visualization of neuron models[J]. Frontiers in Neuroinformatics, 2015, 9: 1-9.

【17】Khandelwal H。 3D printing enabled rapid manufacture of metal parts at low cost[C]//63rd Indian Foundry Congress。 2015。

【18】Kamei K, Mashimo Y, Koyama Y, et al. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients[J]. Biomedical Microdevices, 2015, 17(2): 1-8.

【19】Yamamoto I, Ota R, Zhu R, et al. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer[J]. Bio-Medical Materials and Engineering, 2015, 26(s1): 341-345.

【20】Joshi S C, Sheikh A A. 3D printing in aerospace and its long-term sustainability[J]. Virtual and Physical Prototyping, 2015, 10(4): 175-185.

【21】Klein S R, Deininger M, Gillespie R S, et al. Novel target fabrication using 3D printing developed at University of Michigan[J]. Journal of Physics: Conference Series, 2016, 713: 012008.

【22】陈传忠, 王佃刚, 边洁. 激光法制备纳米粉体的研究现状[J]. 激光技术, 2003, 27(1): 68-70. (Chen Chuanzhong, Wang Diangang, Bian Jie. Present study situation of synthesis of nanopowders by laser technique. Laser Technology, 2003, 27(1): 68-70)

引用该论文

Xiang Youlai,Du Ai,Xie Zhiyong,Ye Junjian,Zhang Zhihua,Zhou Bin。 3D printing technology for the fabrication of micro target components[J]。 High Power Laser and Particle Beams, 2016, 28(12): 124101

向友来,杜艾,谢志勇,叶君健,张志华,周斌. 3D打印技术应用于加工微靶零件[J]. 强激光与粒子束, 2016, 28(12): 124101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

全民彩票计划群 极速赛车是国家的吗 v8彩票计划群 彩票监察计划群 W彩票计划群 8828彩票计划群 彩吧彩票计划群 凤凰娱乐彩票计划群 福布斯彩票计划群 极速赛车哪里发行