首页 > 论文 > 光子学报 > 45卷 > 5期(pp:501001--1)

激光云高仪对那曲地区大气边界层高度的探测分析

Performance Analysis of Atmospheric Boundary Layer Height Measurement in Nagqu Based on Ceilometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

2014年7月至8月在第三次青藏高原大气科学试验的支持下, 分析了夏季那曲地区大气边界层高度日变化特征。采用激光云高仪通过后向散射信号梯度法求得大气边界层高度, 将云顶高度判定为边界层高度时, 那曲地区对流边界层高度最高可达3800 m, 在夜间稳定边界层情况下, 最低只有40 m。采用无线电探空仪数据, 利用位温梯度法、相对湿度梯度法求得大气边界层高度。利用云高仪与探空仪同步实验40天得到的有效数据, 对后向散射信号梯度法与位温梯度法得到的大气边界层高度的相关性进行分析, 相关系数达0。78, 标准偏差为738。84 m。对8组较为异常量据的再分析发现云高仪在晴空探测大气时信噪比存在一定的不足。对比早、晚测量结果可知, 那曲地区大气边界层高度日变化大, 是由于该地区地处内陆海拔较高, 夏季日照辐射相对平原地区较强, 对流和气温强烈的日变化引起大气层结日变化较大。

Abstract

With the support of the Third Tibetan Plateau Experiment of Atmospheric Sciences, variations of the atmospheric boundary layer height of Nagqu area in summer(Jul-Aug 2014) were compared. Ceilometer derived atmospheric boundary layer height was estimated via gradient method of backscatter signal. The result shows that, when the cloud top height is determined as atmospheric boundary layer height, the upper limit of convection boundary layer height could reach 3800 m. And, for nocturnal stable boundary layer, the lower limit is only 40 m. Radiosonde derived atmospheric boundary layer height was obtained using gradient method of potential temperature and relative humidity. By analyzing the valid dataset derived from the simultanious measurements of ceilometer and radiosonde within the 40 days, the correlation coefficient of atmospheric boundary height obtained by gradient method of backscatter signal and potential temperature, is calculated as 0.78, while the standard deviation is 738.84 m. In addition, it has been found that signal-to-noise ratio of ceilometer detection is insufficient under clear sky condition by analysis of 8 sets of abnormal data. In short, results indicate great diurnal variation of atmospheric boundary layer height by comparing daily measured data, which could be attributed to that the high altitude of Nagqu district causes stronger solar radiation compared to plain area, and hence intense diurnal variation of temperature and convection in summer.

补充资料

中图分类号:P407.5;P412.292;P412.23

DOI:

基金项目:国家自然科学基金(Nos.41375016, 91337103, 41576108)资助

收稿日期:2015-11-30

修改稿日期:2016-01-25

网络出版日期:--

作者单位    点击查看

廖希伟:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
宋小全:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
王东祥:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
张倩:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
戴光耀:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
吴松华:中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100

联系人作者:廖希伟(909432902@qq.com)

备注:廖希伟(1989-), 男, 硕士研究生, 主要研究方向为激光雷达大气探测.

【1】STULL R B. An introduction to boundary layer meteorology[M]. Springer Science & Business Media, 1988.

【2】LIU S, LIANG X。 Observed diurnal cycle climatology of planetary boundary layer height[J]。 Journal of Climate, 2010, 23(21): 5790-5809。

【3】XU Xiang-de, CHEN Lian-shou. Advances of the study on Tibetan plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.

【4】LIANG Xiao-yun, LIU Yi-min, WU Guo-xiong. The Qinghai-Tibet plateau uplift for spring and summer atmospheric circulation influence in Asia[J]. Plateau Meteorology, 2005, 24(6): 837-845.
梁潇云, 刘屹岷, 吴国雄. 青藏高原隆升对春、夏季亚洲大气环流的影响[J]. 高原气象, 2005, 24(6): 837-845.

【5】YAN Bao-dong, SONG Xiao-quan, CHEN Chao, et al. Beijing atmospheric boundary layer observation with Lidar in 2011 spring[J]. Acta Optica Sinica, 2013, 33(s1): s128001.
闫宝东, 宋小全, 陈超, 等. 2011春季北京大气边界层的激光雷达观测研究[J]. 光学学报, 2013, 33(s1): s128001.

【6】MAO Jian-dong, HUA Deng-xin, HE Ting-yao. A compact mie scattering lidar and its observation[J]. Acta Photonica Sinica, 2010, 39(2): 284-288.
毛建东, 华灯鑫, 何廷尧. 小型米散射激光雷达的研制及其探测[J]. 光子学报, 2010, 39(2): 284-288.

【7】MARTUCCI G, MATTHEY R, MITEV V, et al. Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(7): 1231-1244.

【8】MATTHIAS V, BALIS D, B SENBERG J, et al. Vertical aerosol distribution over Europe: statistical analysis of Raman lidar data from 10 European aerosol research lidar network (EARLINET) stations[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D18): D18201.

【9】SICARD M, PéREZ C, ROCADENBOSCH F, et al. Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations[J]. Boundary-Layer Meteorology, 2006, 119(1): 135-157.

【10】WANG Dong-xiang, SONG Xiao-quan, FENG Chang-zhong, et al. Coherent doppler lidar observes Bohai Sea and Huanghai Sea marine atmospheric boundary layer height research[J]. Acta Optica Sinica, 2015, 35(s1): s101001.
王东祥, 宋小全, 冯长中, 等. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(s1): s101001.

【11】COHN S A, ANGEVINE W M. Boundary layer height and entrainment zone thickness measured by Lidars and wind-profiling radars[J]. Journal of Applied Meteorology, 2000, 39(8): 1233-1247.

【12】BROOKS I M. Finding boundary layer top: application of a wavelet covariance transform to Lidar backscatter profiles[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(8): 1092-1105.

【13】MENUT L, FLAMANT C, PELON J, et al. Urban boundary-layer height determination from Lidar measurements over the Paris area[J]. Applied Optics, 1999, 38(6): 945-954.

【14】OYJ V. Vaisala ceilometer CL31 user′s guide[M]. Vaisala Oyj, Helsinki, Finland, 2006.

【15】BU Ling-bing, YUAN Jing, GAO Ai-zhen, et al. Fog and haze detection process based on ceilometer[J]. Acta Photonica Sinica, 2014, 43(9): 0901002.
卜令兵, 袁静, 高爱臻, 等. 基于激光云高仪的雾霾过程探测[J]. 光子学报, 2014, 43(9): 0901002.

【16】HAIJ M D, WAUBEN W, BALTINK H K。 Continuous mixing layer height determination using the LD-40 ceilometer: a feasibility study[M]。 Royal Netherlands Meteorological Institute (KNMI), 2007。

【17】MüNKEL C, ROININEN R. Automatic monitoring of boundary layer structures with ceilometer[OL]. (2008-06-23) [2015-10-21]. http: //www.wmo.int/pages/Prog/www/IMOP/publications/IOM-104_TECO-2010/P2_17_Muenkel_Germany.pdf.

【18】HAEFFELIN M, ANGELINI F, MORILLE Y, et al。 Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe[J]。 Boundary-Layer Meteorology, 2012, 143(1): 49-75。

【19】HENNEMUTH B, LAMMERT A. Determination of the atmosphe-ric boundary layer height from radiosonde and lidar backscatter[J]. Boundary-Layer Meteorology, 2006, 120(1): 181-200.

【20】LI Mao-shan, MA Yao-ming, HU Ze-yong, et al. Analysis of characteristics of atmospheric boundary layer in Nagqu area of northern Tibet[J]. Plateau Meteorology, 2004, 23(5): 728-733.
李茂善, 马耀明, 胡泽勇, 等. 藏北那曲地区大气边界层特征分析[J]. 高原气象, 2004, 23(5): 728-733.

【21】LIU Cheng, MING Hai, WANG Pei, et al. Tibet Nagqu and Beijing suburb of tropospheric aerosol micro pulse laser radar measurement[J]. Acta Photonica Sinica, 2006, 35(9): 1435-1439.
刘诚, 明海, 王沛, 等. 西藏那曲与北京郊区对流层气溶胶的微脉冲激光雷达测量[J]. 光子学报, 2006, 35(9): 1435-1439.
Foundation item: The National Natural Science Foundation of China (Nos.41375016, 91337103, 41576108)

引用该论文

LIAO Xi-wei,SONG Xiao-quan,WANG Dong-xiang,ZHANG Qian,DAI Guang-yao,WU Song-hua. Performance Analysis of Atmospheric Boundary Layer Height Measurement in Nagqu Based on Ceilometer[J]. ACTA PHOTONICA SINICA, 2016, 45(5): 0501001

廖希伟,宋小全,王东祥,张倩,戴光耀,吴松华. 激光云高仪对那曲地区大气边界层高度的探测分析[J]. 光子学报, 2016, 45(5): 0501001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

中大奖彩票计划群 极速赛车怎么赢钱 赢天下彩票计划群 88彩票计划群 北京两步彩 快赢彩票 百尊娱乐彩票计划群 上海时时乐 海南4+1 极速赛车计划数据全天