首页 > 论文 > 量子光学学报 > 15卷 > 1期(pp:70-75)

复变系数Ginzburg-Landau方程的啁啾组合孤波解

Chirped Combined Solitary wave Solutions of the ComplexGinzburg-Landau Equation with Variable Coefficients

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于描述非均匀光纤系统的复系数Ginzburg-Landau方程,通过拟解法得到了该方程的精确啁啾组合孤波解,并分析了该解的特性。通过大量的数值模拟,发现在有限的初始扰动下这些组合孤波解是在非均匀光纤系统中稳定的。最后,为了进一步研究组合孤波解的稳定性,我们还探讨了组合孤波的相互作用。

Abstract

In this paper, based on the generalized cubic complex Ginzburg-Landau (CGL) equation with varying coefficients describing the inhomogeneous optical fiber system, exact chirped combined solitary wave solutions were found by using a suitable ansatz and their features were analyzed. A lot of numerical simulations show that these combined solitary wave solutions under finite initial perturbations are stable in the inhomogeneous optical fiber system. Finally, in order to further investigate the stability of the combined solitary wave solutions, we discuss the interaction between two chirped combined solitary waves.

补充资料

中图分类号:O431

所属栏目:光传输与光子晶体

基金项目:国家基础科学人才培养基金(J0730317);国家自然科学基金(60878008);山西大学青年科技基金资助项目(2007114)

收稿日期:2008-06-16

修改稿日期:2008-10-17

网络出版日期:0001-01-01

作者单位    点击查看

马宇波:山西大学物理电子工程学院, 山西 太原 030006
田晋平:山西大学物理电子工程学院, 山西 太原 030006
徐忠孝:山西大学物理电子工程学院, 山西 太原 030006
王晓宇:山西大学物理电子工程学院, 山西 太原 030006
肖燕:山西大学物理电子工程学院, 山西 太原 030006

联系人作者:马宇波(xiaoyan@sxu.edu.cn)

备注:马宇波(1984-),男,山西朔州人,山西大学物理电子工程学院光学专业在读硕士。

【1】AGRAWAL G P. Nonlinear Fiber Optics[M]. Academic Press, New York, 1995.

【2】HASEGAWA A, LODAMA Y. Solitons in Optical Communications [M]. Oxford University Press, Oxford, 1995.

【3】HASEGAWA A, TAPPERT F. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I. Anomalous Dispersion [J]. Appl Phys Lett, 1973, 23(3): 142-144.

【4】MOLLENAUER L F, STOLEN R H, GORDON J P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers [J]. Phys Rev Lett, 1980, 45(13): 1095-1098.

【5】BLANGER P A, GAGNON L, PARE C. Solitary Pulses in an Amplified Nonlinear Dispersive Medium [J]. Opt Lett, 1989, 14(17): 943-945.

【6】GAGNON L, BLANGER P A. Adiabatic Amplification of Optical Solitons [J]. Phys Rev A, 1991, 43(11): 6187-6193.

【7】HAUS H A, FUJIMOTO J G, IPPEN E P. Structures for Additive Pulse Mode Locking [J]. J Opt Soc Am B, 1991, 8(10): 2068-2078.

【8】AKHMEDIEV N, AFANASJEV V V. Novel Arbitrary-Amplitude Soliton Solutions of the Cubic-Quintic Complex Ginzburg-Landau Equation [J]. Phys Rev Lett, 1995, 75(12): 2320-2323.

【9】TSOY E N, ANKIEWICZ A, AKHMEDIEV N. Dynamical Models for Dissipative Localized Waves of the Complex Ginzburg-Landau Equation [J]. Phys Rev E, 2006, 73: 036621.

【10】AFANASJEV V V, AKHMEDIEV N, SOTO-CRESPO J M. Three Forms of Localized Solutions of the Quintic Complex Ginzburg-Landau Equation [J]. Phys Rev E, 1996, 53: 1931.

【11】OIOU L W, AGRAWAL G P. Solitons in Fiber Amplifiers Beyond the Parabolic-gain and Rate-equation Approximations [J]. Opt Commun, 1996, 124(5): 500-504.

【12】SAKAGUCHI H, MALOMED B A. Instabilities and Splitting of Pulses in Coupled Ginzburg Landau Equations [J]. Physica D, 2001, 154(3): 229-239.

【13】CRASOVAN L C, MALOMED B A, MIHALACHE D. Stable Vortex Solitons in the Two-dimensional Ginzburg-Landau Equation [J]. Phys Rev E, 2000, 63(1): 016605.

【14】CRASOVAN L C, MALOMED B A, MIHALACHE D. Erupting flat-top and Composite Spiral Solitons in the Two-dimensional Ginzburg Landau Equation [J]. Phys Lett A, 2001, 289(1): 59-65.

【15】FEWO S I, ATANGANA J, KENFACK-JIOTSA A, et al. Dispersion-managed Solitons in the Cubic Complex Ginzburg Landau Equation as Perturbations of Nonlinear Schr Dinger Equation [J]. Opt Commun, 2005, 252(3): 138-149.

【16】GRELU P, SOTO-CRESPO J M, AKHMEDIEV N. Light Bullets and Dynamic Pattern Formation in Nonlinear Dissipative Systems [J]. Opt Express, 2005, 13(23): 9352-9630.

【17】SKARKA V, ALEKSIC N B. Stability Criterion for Dissipative Soliton Solutions of the One-, Two-, and Three-Dimensional Complex Cubic-Quintic Ginzburg-Landau Equations [J]. Phys Rev Lett, 2006, 96(1): 013903.

【18】ARANSON I S, KRAMER L. The World of the Complex Ginzburg-Landau Equation [J]. Rev Mod Phys, 2002, 74(1): 99-143.

【19】LI Z H, LI L, TIAN H P, et al. Chirped Femtosecond Solitonlike Laser Pulse Form with Self-Frequency Shift [J]. Phys Rev Lett, 2002, 89(26): 263901.

【20】SHI X J, LI L, HAO R Y, et al。 Stability Analysis and Interaction of Chirped Femtosecond Soliton-like Laser Pulses [J]。 Opt Commun, 2004, 241(3): 185-194。

【21】FANG F, XIAO Y。 Stability of Chirped Bright and Dark Soliton-like Solutions of the Cubic Complex Ginzburg Landau Equation with Variable Coefficients [J]。 Opt Commu, 2006, 268: 305-310。

【22】TIAN J P, ZHOU G S. Chirped Soliton-like Solutions for Nonlinear Schrodinger Equation with Variable Coefficients [J]. Opt Commu, 2006, 262: 257 262.

【23】TIAN J P. Combined Solitary-wave Solution for Coupled Higher-order Nonlinear Schrodinger Equations [J]. J Opt Soc Am B, 2004, 21(11):1908-1912.

【24】YANG R C, LI L, HAO R Y, et al. Combined Solitary Wave Solutions for the Inhomogeneous Higher-order Nonlinear Schrdinger Equation [J]. Phys Rev E, 2005, 71: 036616.

引用该论文

MA Yu-bo,TIAN Jin-ping,XU Zhong-xiao,WANG Xiao-yu,XIAO Yan. Chirped Combined Solitary wave Solutions of the ComplexGinzburg-Landau Equation with Variable Coefficients[J]. Acta Sinica Quantum Optica, 2009, 15(1): 70-75

马宇波,田晋平,徐忠孝,王晓宇,肖燕。 复变系数Ginzburg-Landau方程的啁啾组合孤波解[J]。 量子光学学报, 2009, 15(1): 70-75

被引情况

【1】吕亭亭,郭泽东,肖燕. 矢量孤波在综合管理的双折射光纤系统中的传输. 量子光学学报, 2014, 20(4): 316-322

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

豪门会彩票计划群 河北11选5走势图 上海11选5计划 山东11选5 湖北快3走势 千禧彩票手机app下载 第1彩票计划群 湖北快3开奖 彩票监察计划群 上海11选5